
FULL ARCHIVE

b l o g . D a i l y D o s e o f D S . c o m

320+ Data Science posts

580+ pages

 blog.DailyDoseofDS.com

 1

Table of Contents
The Must-Know Categorisa3on of Discrimina3ve Models 12

Where Did The Regulariza3on Term Originate From? 18

How to Create The Elegant Moving Bubbles Chart in Python? 22

Gradient Checkpoin3ng: Save 50-60% Memory When Training a Neural
Network .. 24

Gaussian Mixture Models: The Flexible Twin of KMeans 28

Why Correla3on (and Other Summary Sta3s3cs) Can Be Misleading 33

MissForest: A Be[er Alterna3ve To Zero (or Mean) Imputa3on 35

A Visual and Intui3ve Guide to The Bias-Variance Problem 39

The Most Under-appreciated Technique To Speed-up Python 41

The Overlooked Limita3ons of Grid Search and Random Search 44

An Intui3ve Guide to Genera3ve and Discrimina3ve Models in Machine
Learning .. 48

Feature Scaling is NOT Always Necessary .. 55

Why Sigmoid in Logis3c Regression? ... 58

Build Elegant Data Apps With The Coolest Mito-Streamlit Integra3on 62

A Simple and Intui3ve Guide to Understanding Precision and Recall 64

Skimpy: A Richer Alterna3ve to Pandas' Describe Method 69

A Common Misconception About Model Reproducibility 71

The Biggest Limita3on Of Pearson Correla3on Which Many Overlook 76

Gigasheet: Effortlessly Analyse Upto 1 Billion Rows Without Any Code 78

Why Mean Squared Error (MSE)? .. 82

A More Robust and Underrated Alterna3ve To Random Forests 90

The Most Overlooked Problem With Impu3ng Missing Values Using Zero (or
Mean) ... 93

A Visual Guide to Joint, Marginal and Condi3onal Probabili3es 95

Jupyter Notebook 7: Possibly One Of The Best Updates To Jupyter Ever 96

How to Find Op3mal Epsilon Value For DBSCAN Clustering? 97

Why R-squared is a Flawed Regression Metric ... 99

75 Key Terms That All Data Scien3sts Remember By Heart 102

 blog.DailyDoseofDS.com

 2

The Limita3on of Sta3c Embeddings Which Made Them Obsolete 109

An Overlooked Technique To Improve KMeans Run-3me 116

The Most Underrated Skill in Training Linear Models 119

Poisson Regression: The Robust Extension of Linear Regression 125

The Biggest Mistake ML Folks Make When Using Mul3ple Embedding Models
 ... 126

Probability and Likelihood Are Not Meant To Be Used Interchangeably 129

SummaryTools: A Richer Alterna3ve To Pandas' Describe Method. 135

40 NumPy Methods That Data Scien3sts Use 95% of the Time 136

An Overly Simplified Guide To Understanding How Neural Networks Handle
Linearly Inseparable Data .. 138

2 Mathema3cal Proofs of Ordinary Least Squares ... 145

A Common Misconcep3on About Log Transforma3on 146

Raincloud Plots: The Hidden Gem of Data Visualisa3on 149

7 Must-know Techniques For Encoding Categorical Feature 153

Automated EDA Tools That Let You Avoid Manual EDA Tasks 154

The Limita3on Of Silhoue[e Score Which Is Ojen Ignored By Many 156

9 Must-Know Methods To Test Data Normality .. 159

A Visual Guide to Popular Cross Valida3on Techniques 163

Decision Trees ALWAYS Overfit. Here's A Lesser-Known Technique To Prevent It.
 ... 167

Evaluate Clustering Performance Without Ground Truth Labels 169

One-Minute Guide To Becoming a Polars-savvy Data Scien3st 172

The Most Common Misconcep3on About Con3nuous Probability Distribu3ons
 ... 174

Don't Overuse Sca[er, Line and Bar Plots. Try These Four Elegant Alterna3ves.
 ... 175

CNN Explainer: Interac3vely Visualize a Convolu3onal Neural Network 178

Sankey Diagrams: An Underrated Gem of Data Visualiza3on 180

A Common Misconcep3on About Feature Scaling and Standardiza3on 181

7 Elegant Usages of Underscore in Python ... 184

Random Forest May Not Need An Explicit Valida3on Set For Evalua3on 185

Declu[er Your Jupyter Notebook Using Interac3ve Controls 188

Avoid Using Pandas' Apply() Method At All Times ... 190

 blog.DailyDoseofDS.com

 3

A Visual and Overly Simplified Guide To Bagging and Boos3ng 192

10 Most Common (and Must-Know) Loss Func3ons in ML 195

How To Enforce Type Hints in Python? ... 196

A Common Misconcep3on About Dele3ng Objects in Python 197

Theil-Sen Regression: The Robust Twin of Linear Regression 200

What Makes The Join() Method Blazingly Faster Than Itera3on? 202

A Major Limita3on of NumPy Which Most Users Aren't Aware Of 205

The Limita3ons Of Elbow Curve And What You Should Replace It With 206

21 Most Important (and Must-know) Mathema3cal Equa3ons in Data Science
 ... 210

Beware of This Unexpected Behaviour of NumPy Methods 213

Try This If Your Linear Regression Model is Underperforming 214

Pandas vs Polars — Run-3me and Memory Comparison 216

A Hidden Feature of a Popular String Method in Python 218

The Limita3on of KMeans Which Is Ojen Overlooked by Many 219
! Jupyter Notebook + Spreadsheet + AI — All in One Place With Mito 221

Nine Most Important Distribu3ons in Data Science .. 223

The Limita3on of Linear Regression Which is Ojen Overlooked By Many 229

A Reliable and Efficient Technique To Measure Feature Importance 231

Does Every ML Algorithm Rely on Gradient Descent? 233

Why Sklearn's Linear Regression Has No Hyperparameters? 235

Enrich The Default Preview of Pandas DataFrame with Jupyter DataTables ... 237

Visualize The Performance Of Linear Regression With This Simple Plot 238

Enrich Your Heatmaps With This Simple Trick .. 240

Confidence Interval and Predic3on Interval Are Not The Same 241

The Ul3mate Categoriza3on of Performance Metrics in ML 243

The Coolest Matplotlib Hack to Create Subplots Intui3vely 247

Execute Python Project Directory as a Script .. 249

The Most Overlooked Problem With One-Hot Encoding 250

9 Most Important Plots in Data Science ... 252

Is Categorical Feature Encoding Always Necessary Before Training ML Models?
 ... 254

Scikit-LLM: Integrate Sklearn API with Large Language Models 257

 blog.DailyDoseofDS.com

 4

The Counterintui3ve Behaviour of Training Accuracy and Training Loss 258

A Highly Overlooked Point In The Implementa3on of Sigmoid Func3on 262

The Ul3mate Categoriza3on of Clustering Algorithms 265

Improve Python Run-3me Without Changing A Single Line of Code 267

A Lesser-Known Feature of the Merge Method in Pandas 269

The Coolest GitHub-Colab Integra3on You Would Ever See 271

Most Sklearn Users Don't Know This About Its LinearRegression Implementa3on
 ... 272

Break the Linear Presenta3on of Notebooks With S3ckyland 274

Visualize The Performance Of Any Linear Regression Model With This Simple
Plot ... 275

Waterfall Charts: A Be[er Alterna3ve to Line/Bar Plot 277

What Does The Google Styling Guide Say About Imports 278

How To Truly Use The Train, Valida3on and Test Set 280

Restart Jupyter Kernel Without Losing Variables .. 283

The Advantages and Disadvantages of PCA To Consider Before Using It 284

Loss Func3ons: An Algorithm-wise Comprehensive Summary 286

Is Data Normaliza3on Always Necessary Before Training ML Models? 288

Annotate Data With The Click Of A Bu[on Using Pigeon 291

Enrich Your Confusion Matrix With A Sankey Diagram 292

A Visual Guide to Stochas3c, Mini-batch, and Batch Gradient Descent 294

A Lesser-Known Difference Between For-Loops and List Comprehensions 297

The Limita3on of PCA Which Many Folks Ojen Ignore 299

Magic Methods: An Underrated Gem of Python OOP 302

The Taxonomy Of Regression Algorithms That Many Don't Bother To Remember
 ... 305

A Highly Overlooked Approach To Analysing Pandas DataFrames 307

Visualise The Change In Rank Over Time With Bump Charts 308

Use This Simple Technique To Never Struggle With TP, TN, FP and FN Again .. 309

The Most Common Misconcep3on About Inplace Opera3ons in Pandas 311

Build Elegant Web Apps Right From Jupyter Notebook with Mercury 313

Become A Bilingual Data Scien3st With These Pandas to SQL Transla3ons 315

A Lesser-Known Feature of Sklearn To Train Models on Large Datasets 317

A Simple One-Liner to Create Professional Looking Matplotlib Plots 319

 blog.DailyDoseofDS.com

 5

Avoid This Costly Mistake When Indexing A DataFrame 321

9 Command Line Flags To Run Python Scripts More Flexibly 324

Breathing KMeans: A Be[er and Faster Alterna3ve to KMeans 326

How Many Dimensions Should You Reduce Your Data To When Using PCA? ... 329

! Mito Just Got Supercharged With AI! .. 332

Be Cau3ous Before Drawing Any Conclusions Using Summary Sta3s3cs 334

Use Custom Python Objects In A Boolean Context .. 336

A Visual Guide To Sampling Techniques in Machine Learning 338

You Were Probably Given Incomplete Info About A Tuple's Immutability 342

A Simple Trick That Significantly Improves The Quality of Matplotlib Plots 344

A Visual and Overly Simplified Guide to PCA .. 346

Supercharge Your Jupyter Kernel With ipyflow .. 349

A Lesser-known Feature of Crea3ng Plots with Plotly 351

The Limita3on Of Euclidean Distance Which Many Ojen Ignore 353

Visualising The Impact Of Regularisa3on Parameter 356

AutoProfiler: Automa3cally Profile Your DataFrame As You Work 358

A Li[le Bit Of Extra Effort Can Hugely Transform Your Storytelling Skills 360

A Nasty Hidden Feature of Python That Many Programmers Aren't Aware Of
 ... 362

Interac3vely Visualise A Decision Tree With A Sankey Diagram 365

Use Histograms With Cau3on. They Are Highly Misleading! 367

Three Simple Ways To (Instantly) Make Your Sca[er Plots Clu[er Free 369

A (Highly) Important Point to Consider Before You Use KMeans Next Time 372

Why You Should Avoid Appending Rows To A DataFrame 375

Matplotlib Has Numerous Hidden Gems. Here's One of Them. 377

A Counterintui3ve Thing About Python Dic3onaries 379

Probably The Fastest Way To Execute Your Python Code 382

Are You Sure You Are Using The Correct Pandas Terminologies? 384

Is Class Imbalance Always A Big Problem To Deal With? 387

A Simple Trick That Will Make Heatmaps More Elegant 389

A Visual Comparison Between Locality and Density-based Clustering 391

Why Don't We Call It Logis3c Classifica3on Instead? 392

A Typical Thing About Decision Trees Which Many Ojen Ignore 394

 blog.DailyDoseofDS.com

 6

Always Validate Your Output Variable Before Using Linear Regression 395

A Counterintui3ve Fact About Python Func3ons .. 396

Why Is It Important To Shuffle Your Dataset Before Training An ML Model 397

The Limita3ons Of Heatmap That Are Slowing Down Your Data Analysis 398

The Limita3on Of Pearson Correla3on Which Many Ojen Ignore 399

Why Are We Typically Advised To Set Seeds for Random Generators? 400

An Underrated Technique To Improve Your Data Visualiza3ons 401

A No-Code Tool to Create Charts and Pivot Tables in Jupyter 402

If You Are Not Able To Code A Vectorized Approach, Try This. 403

Why Are We Typically Advised To Never Iterate Over A DataFrame? 405

Manipula3ng Mutable Objects In Python Can Get Confusing At Times 406

This Small Tweak Can Significantly Boost The Run-3me of KMeans 408

Most Python Programmers Don't Know This About Python OOP 410

Who Said Matplotlib Cannot Create Interac3ve Plots? 412

Don't Create Messy Bar Plots. Instead, Try Bubble Charts! 413

You Can Add a List As a Dic3onary's Key (Technically)! 414

Most ML Folks Ojen Neglect This While Using Linear Regression 415

35 Hidden Python Libraries That Are Absolute Gems 416

Use Box Plots With Cau3on! They May Be Misleading. 417

An Underrated Technique To Create Be[er Data Plots 418

The Pandas DataFrame Extension Every Data Scien3st Has Been Wai3ng For 419

Supercharge Shell With Python Using Xonsh ... 420

Most Command-line Users Don't Know This Cool Trick About Using Terminals
 ... 421

A Simple Trick to Make The Most Out of Pivot Tables in Pandas 422

Why Python Does Not Offer True OOP Encapsula3on 423

Never Worry About Parsing Errors Again While Reading CSV with Pandas 424

An Interes3ng and Lesser-Known Way To Create Plots Using Pandas 425

Most Python Programmers Don't Know This About Python For-loops 426

How To Enable Func3on Overloading In Python ... 427

Generate Helpful Hints As You Write Your Pandas Code 428

Speedup NumPy Methods 25x With Bo[leneck ... 429

Visualizing The Data Transforma3on of a Neural Network 430

 blog.DailyDoseofDS.com

 7

Never Refactor Your Code Manually Again. Instead, Use Sourcery! 431

Draw The Data You Are Looking For In Seconds ... 432

Style Matplotlib Plots To Make Them More A[rac3ve 433

Speed-up Parquet I/O of Pandas by 5x ... 434

40 Open-Source Tools to Supercharge Your Pandas Workflow 435

Stop Using The Describe Method in Pandas. Instead, use Skimpy. 436

The Right Way to Roll Out Library Updates in Python 437

Simple One-Liners to Preview a Decision Tree Using Sklearn 438

Stop Using The Describe Method in Pandas. Instead, use Summarytools. 439

Never Search Jupyter Notebooks Manually Again To Find Your Code 440

F-strings Are Much More Versa3le Than You Think .. 441

Is This The Best Animated Guide To KMeans Ever? ... 442

An Effec3ve Yet Underrated Technique To Improve Model Performance 443

Create Data Plots Right From The Terminal ... 444

Make Your Matplotlib Plots More Professional .. 445

37 Hidden Python Libraries That Are Absolute Gems 446

Preview Your README File Locally In GitHub Style ... 447

Pandas and NumPy Return Different Values for Standard Devia3on. Why? ... 448

Visualize Commit History of Git Repo With Beau3ful Anima3ons 449

Perfplot: Measure, Visualize and Compare Run-3me With Ease 450

This GUI Tool Can Possibly Save You Hours Of Manual Work 451

How Would You Iden3fy Fuzzy Duplicates In A Data With Million Records? 452

Stop Previewing Raw DataFrames. Instead, Use DataTables. 454
!

 A Single Line That Will Make Your Python Code Faster 455

Preufy Word Clouds In Python .. 456

How to Encode Categorical Features With Many Categories? 457

Calendar Map As A Richer Alterna3ve to Line Plot ... 458

10 Automated EDA Tools That Will Save You Hours Of (Tedious) Work 459

Why KMeans May Not Be The Apt Clustering Algorithm Always 460

Conver3ng Python To LaTeX Has Possibly Never Been So Simple 461

Density Plot As A Richer Alterna3ve to Sca[er Plot 462

30 Python Libraries to (Hugely) Boost Your Data Science Produc3vity 463

Sklearn One-liner to Generate Synthe3c Data .. 464

 blog.DailyDoseofDS.com

 8

Label Your Data With The Click Of A Bu[on ... 465

Analyze A Pandas DataFrame Without Code ... 466

Python One-Liner To Create Sketchy Hand-drawn Plots 467

70x Faster Pandas By Changing Just One Line of Code 468

An Interac3ve Guide To Master Pandas In One Go ... 469

Make Dot Nota3on More Powerful in Python .. 470

The Coolest Jupyter Notebook Hack ... 471

Create a Moving Bubbles Chart in Python .. 472

Skorch: Use Scikit-learn API on PyTorch Models ... 473

Reduce Memory Usage Of A Pandas DataFrame By 90% 474

An Elegant Way To Perform Shutdown Tasks in Python 475

Visualizing Google Search Trends of 2022 using Python 476

Create A Racing Bar Chart In Python ... 477

Speed-up Pandas Apply 5x with NumPy ... 478

A No-Code Online Tool To Explore and Understand Neural Networks 479

What Are Class Methods and When To Use Them? .. 480

Make Sklearn KMeans 20x 3mes faster ... 481

Speed-up NumPy 20x with Numexpr .. 482

A Lesser-Known Feature of Apply Method In Pandas 483

An Elegant Way To Perform Matrix Mul3plica3on ... 484

Create Pandas DataFrame from Dataclass ... 485

Hide A[ributes While Prin3ng A Dataclass Object ... 486

List : Tuple :: Set : ? .. 487

Difference Between Dot and Matmul in NumPy ... 488

Run SQL in Jupyter To Analyze A Pandas DataFrame 489

Automated Code Refactoring With Sourcery .. 490

__Post_init__: Add A[ributes To A Dataclass Object Post Ini3aliza3on 491

Simplify Your Func3ons With Par3al Func3ons .. 492

When You Should Not Use the head() Method In Pandas 493

DotMap: A Be[er Alterna3ve to Python Dic3onary 494

Prevent Wild Imports With __all__ in Python .. 495

Three Lesser-known Tips For Reading a CSV File Using Pandas 496

The Best File Format To Store A Pandas DataFrame 497

 blog.DailyDoseofDS.com

 9

Debugging Made Easy With PySnooper ... 498

Lesser-Known Feature of the Merge Method in Pandas 499

The Best Way to Use Apply() in Pandas .. 500

Deep Learning Network Debugging Made Easy ... 501

Don't Print NumPy Arrays! Use Lovely-NumPy Instead. 502

Performance Comparison of Python 3.11 and Python 3.10 503

View Documenta3on in Jupyter Notebook ... 504

A No-code Tool To Understand Your Data Quickly .. 505

Why 256 is 256 But 257 is not 257? .. 506

Make a Class Object Behave Like a Func3on .. 508

Lesser-known feature of Pickle Files .. 510

Dot Plot: A Poten3al Alterna3ve to Bar Plot .. 512

Why Correla3on (and Other Sta3s3cs) Can Be Misleading. 513

Supercharge value_counts() Method in Pandas With Sidetable 514

Write Your Own Flavor Of Pandas .. 515

CodeSquire: The AI Coding Assistant You Should Use Over GitHub Copilot 516

Vectoriza3on Does Not Always Guarantee Be[er Performance 517

In Defense of Match-case Statements in Python .. 518

Enrich Your Notebook With Interac3ve Controls .. 520

Get No3fied When Jupyter Cell Has Executed .. 522

Data Analysis Using No-Code Pandas In Jupyter .. 523

Using Dic3onaries In Place of If-condi3ons .. 524

Clear Cell Output In Jupyter Notebook During Run-3me 526

A Hidden Feature of Describe Method In Pandas ... 527

Use Slo[ed Class To Improve Your Python Code ... 528

Stop Analysing Raw Tables. Use Styling Instead! ... 529

Explore CSV Data Right From The Terminal .. 530

Generate Your Own Fake Data In Seconds ... 531

Import Your Python Package as a Module ... 532

Specify Loops and Runs In %%3meit .. 533

Waterfall Charts: A Be[er Alterna3ve to Line/Bar Plot 534

Hexbin Plots As A Richer Alterna3ve to Sca[er Plots 535

Impor3ng Modules Made Easy with Pyforest .. 536

 blog.DailyDoseofDS.com

 10

Analyse Flow Data With Sankey Diagrams .. 538

Feature Tracking Made Simple In Sklearn Transformers 540

Lesser-known Feature of f-strings in Python .. 542

Don't Use 3me.3me() To Measure Execu3on Time ... 543

Now You Can Use DALL·E With OpenAI API .. 544

Polynomial Linear Regression Plot Made Easy With Seaborn 545

Retrieve Previously Computed Output In Jupyter Notebook 546

Parallelize Pandas Apply() With Swijer ... 547

Create DataFrame Hassle-free By Using Clipboard ... 548

Run Python Project Directory As A Script ... 549

Inspect Program Flow with IceCream .. 550

Don't Create Condi3onal Columns in Pandas with Apply 551

Pre[y Ploung With Pandas .. 552

Build Baseline Models Effortlessly With Sklearn ... 553

Fine-grained Error Tracking With Python 3.11 ... 554

Find Your Code Hiding In Some Jupyter Notebook With Ease 555

Restart the Kernel Without Losing Variables .. 556

How to Read Mul3ple CSV Files Efficiently ... 557

Elegantly Plot the Decision Boundary of a Classifier 559

An Elegant Way to Import Metrics From Sklearn ... 560

Configure Sklearn To Output Pandas DataFrame ... 561

Display Progress Bar With Apply() in Pandas ... 562

Modify a Func3on During Run-3me ... 563

Regression Plot Made Easy with Plotly .. 564

Polynomial Linear Regression with NumPy .. 565

Alter the Datatype of Mul3ple Columns at Once .. 566

Datatype For Handling Missing Valued Columns in Pandas 567

Parallelize Pandas with Pandarallel ... 568

Why you should not dump DataFrames to a CSV ... 569

Save Memory with Python Generators .. 571

Don't use print() to debug your code. .. 572

Find Unused Python Code With Ease ... 574

Define the Correct DataType for Categorical Columns 575

 blog.DailyDoseofDS.com

 11

Transfer Variables Between Jupyter Notebooks ... 576

Why You Should Not Read CSVs with Pandas ... 577

Modify Python Code During Run-Time ... 578

Handle Missing Data With Missingno .. 579

 blog.DailyDoseofDS.com

 12

The Must-Know Categorisation of
Discriminative Models

In one of the earlier posts, we discussed Generative and
Discriminative Models.

Today’s post dives into a further categorization of discriminative
models.

Let’s understand.

To recap:

Discriminative models:

• learn decision boundaries that separate different classes.
• maximize the conditional probability: P(Y|X) — Given an

input X, maximize the probability of label Y.
• are meant explicitly for classification tasks.

 blog.DailyDoseofDS.com

 13

Generative models:

• maximize the joint probability: P(X, Y)
• learn the class-conditional distribution P(X|Y)
• are typically not meant for classification tasks, but they can

perform classification nonetheless.

In a gist, discriminative models directly learn the function f that
maps an input vector (x) to a label (y).

 blog.DailyDoseofDS.com

 14

They can be further divided into two categories:
• Probabilistic models
• Direct labeling models

Probabilistic models

As the name suggests, probabilistic models provide
a probabilistic estimate for each class.

They do this by learning the posterior class probabilities P(Y|X).

As a result, their predictions depict the model’s confidence in
predicting a specific class label.

This makes them well-suited in situations when uncertainty is
crucial to the problem at hand.

Examples include:

• Logistic regression
• Neural networks
• CRFs

Labeling models

 blog.DailyDoseofDS.com

 15

Labeling models

In contrast to probabilistic models, labeling models (also called
distribution-free classifiers) directly predict the class label —
without providing any probabilistic estimate.

As a result, their predictions DO NOT indicate a degree
of confidence.

This makes them unsuitable when uncertainty in a model’s
prediction is crucial.

Examples include:

• Random forests
• kNN
• Decision trees

That being said, it is important to note that these models, in some
way, can be manipulated to output a probability.

For instance, Sklearn’s decision tree classifier does provide
a predict_proba() method, as shown below:

 blog.DailyDoseofDS.com

 16

This may appear a bit counterintuitive at first.

In this case, the model outputs the class probabilities by looking
at the fraction of training class labels in a leaf node.

In other words, say a test instance reaches a specific leaf node for
final classification. The model will calculate the probabilities as
the fraction of training class labels in that leaf node.

 blog.DailyDoseofDS.com

 17

Yet, these manipulations do not account for the “true” uncertainty
in a prediction.

This is because the uncertainty is the same for all predictions that
land in the same leaf node.

Therefore, it is always wise to choose probabilistic classifiers
when uncertainty is paramount.

! Over to you: Can you add one more model for probabilistic
and labeling models?

 blog.DailyDoseofDS.com

 18

Where Did The Regularization Term
Originate From?

One of the major aspects of training any reliable ML model is
avoiding overfitting.

In a gist, overfitting occurs when a model learns to perform
exceptionally well on the training data.

This may happen because the model is trying too hard to capture
all unrelated and random noise in our training dataset, as
shown below:

And one of the most common techniques to avoid overfitting
is regularization.

Simply put, the core objective of regularization is to penalize the
model for its complexity.

In fact, we can indeed validate the effectiveness of regularization
experimentally, as shown below:

 blog.DailyDoseofDS.com

 19

As we move to the right, the regularization parameter increases.
As a result, the model creates a simpler decision boundary on all
5 datasets.

Now, if you have taken any ML course or read any tutorials about
this, the most common they teach is to add a penalty (or
regularization) term to the cost function, as shown below:

But why?

 blog.DailyDoseofDS.com

 20

In other words, have you ever wondered why we are taught to
add a squared term to the loss function (when using L2
regularization)?

In my experience, most tutorials never bother to cover it, and
readers are always expected to embrace these notions as a given.

Yet, there are many questions to ask here:

• Where did this regularization term originate from? How
was it derived for the first time?

• What does the regularization term precisely measure?
• Why do we add this regularization term to the loss?
• Why do we square the parameters (specific to L2

regularization)? Why not any other power?
• Is there any probabilistic evidence that justifies the

effectiveness of regularization?

Turns out, there is a concrete probabilistic justification for using
regularization.

And if you are curious, then this is precisely the topic of today’s
machine learning deep dive: “The Probabilistic Origin of
Regularization.”

The Probabilistic Origin of Regularization

While most of the community appreciates the importance of
regularization, in my experience, very few learn about its origin
and the mathematical formulation behind it.

 blog.DailyDoseofDS.com

 21

It can’t just appear out of nowhere, can it?

Thus, the objective of this deep dive is to help you build a solid
intuitive, and logical understanding of regularisation — purely
from a probabilistic perspective.

Image taken from the The Probabilistic Origin of
Regularization article

! Interested folks can read it here: The Probabilistic Origin
of Regularization.

 blog.DailyDoseofDS.com

 22

How to Create The Elegant Moving
Bubbles Chart in Python?

I often come across the moving bubbles chart when I am scrolling
LinkedIn.

I am sure you would have seen them too.

It is elegant animation that depicts the movements of entities
across time. They are particularly useful for determining when
clusters appear in the data and at what state(s).

I always wondered how one can create them in Python.

Turns out, there’s a pretty simple way to do it just three lines of
Python using D3Blocks.

The library utilizes the graphics of the popular d3js Javascript
library to create visually appealing charts with only a few lines
of Python code.

To create a moving bubbles chart, you can use
the d3.movingbubbles() method.

The input should be a Pandas DataFrame. Each row should
represent the state of a sample at a particular timestamp, as
depicted below:

 blog.DailyDoseofDS.com

 23

After aligning the DataFrame in the desired format, you can
create the moving bubbles chart as follows:

This will create an HTML file. You can preview it in a browser
or open it in Jupyter directly using the IPython library.

Isn’t that cool?

 blog.DailyDoseofDS.com

 24

Gradient Checkpointing: Save 50-
60% Memory When Training a
Neural Network

Neural networks primarily use memory in two ways:

• Storing model weights
• During training:

o Forward pass to compute and store activations of all
layers

o Backward pass to compute gradients at each layer

This restricts us from training larger models and also limits the
max batch size that can potentially fit into memory.

Gradient checkpointing is an incredible technique to reduce the
memory overheads of neural nets.

Here, we run the forward pass normally and the core idea is to
optimize the backpropagation step.

Let’s understand how it works.

We know that in a neural network:

• The activations of a specific layer can be solely computed
using the activations of the previous layer.

 blog.DailyDoseofDS.com

 25

• Updating the weights of a layer only depends on two
things:

o The activations of that layer.
o The gradients computed in the next (right) layer.

Gradient checkpointing exploits these ideas to optimize
backpropagation:

• Divide the network into segments before backpropagation
• In each segment:

o Only store the activations of the first layer.
o Discard the rest of the activations.

• When updating the weights of layers in a segment,
recompute its activations using the first layer in that
segment.

This is depicted in the image below:

 blog.DailyDoseofDS.com

 26

As shown above:

• First, we divide the network into 2 segments.
• Next, we only keep the activations of the first layer in each

segment in memory.
• We discard the activations of other layers in the segment.

 blog.DailyDoseofDS.com

 27

• When updating the weights of red layers, we recompute
their activations using the activations of the cyan layer.

Recomputing the activations only when they are needed
tremendously reduces the memory requirement.

Essentially, we don’t need to store all the intermediate activations
in memory.

This allows us to train the network on larger batches of data.

Typically, gradient checkpointing can reduce memory usage
by 50-60%, which is massive.

Of course, this does come at a cost of slightly increased run-time.
This can typically range between 15-25%.

It is because we compute some activations twice.

So there's always a tradeoff between memory and run-time.

Yet, gradient checkpointing is an extremely powerful technique
to train larger models without resorting to more intensive
techniques like distributed training, for instance.

Thankfully, gradient checkpointing is also implemented by many
open-source deep learning frameworks like Pytorch, etc.

! Over to you: What are some ways you use to optimize a neural
network’s training?

 blog.DailyDoseofDS.com

 28

Gaussian Mixture Models: The
Flexible Twin of KMeans

KMeans is widely used for its simplicity and effectiveness as a
clustering algorithm.

But it has many limitations.

To begin:

• It does not account for cluster variance
• It can only produce spherical clusters. As shown below,

even if the data has non-circular clusters, it still produces
round clusters.

 blog.DailyDoseofDS.com

 29

• It performs a hard assignment. There are no probabilistic

estimates of each data point belonging to each cluster.

These limitations often make KMeans a non-ideal choice for
clustering.

Gaussian Mixture Models are often a superior algorithm in this
respect.

As the name suggests, they can cluster a dataset that has a
mixture of many Gaussian distributions.

They can be thought of as a more flexible twin of KMeans.

The primary difference is that:

• KMeans learns centroids.
• Gaussian mixture models learn a distribution.

For instance, in 2 dimensions:

 blog.DailyDoseofDS.com

 30

• KMeans can only create circular clusters
• GMM can create oval-shaped clusters.

The effectiveness of GMMs over KMeans is evident from the
image below.

• KMeans just relies on distance and ignores the distribution
of each cluster

• GMM learns the distribution and produces better clustering.

But how does it exactly work, and why is it so effective?

 blog.DailyDoseofDS.com

 31

What is the core intuition behind GMMs?

How do they model the data distribution so precisely?

If you are curious, then this is precisely what we are learning
in today’s extensive machine learning deep dive.

Gaussian Mixture Models Article

The entire idea and formulation of Gaussian mixture models
appeared extremely compelling and intriguing to me when I first
learned about them.

The notion that a single model can learn diverse data distributions
is truly captivating.

Learning about them has been extremely helpful to me in
building more flexible and reliable clustering algorithms.

Thus, understanding how they work end-to-end will be
immensely valuable if you are looking to expand your expertise
beyond traditional algorithms like KMeans, DBSCAN, etc.

Thus, today’s article covers:

• The shortcomings of KMeans.
• What is the motivation behind GMMs?
• How do GMMs work?
• The intuition behind GMMs.

 blog.DailyDoseofDS.com

 32

• Plotting dummy multivariate Gaussian distributions to
better understand GMMs.

• The end-to-end mathematical formulation of GMMs.
• How to use Expectation-Maximization to model data using

GMMs?
• Coding a GMM from scratch (without sklearn).
• Comparing results of GMMs with KMeans.
• How to determine the optimal number of clusters for

GMMs?
• Some practical use cases of GMMs.
• Takeaways.

! Interested folks can read it here: Gaussian Mixture
Models (GMM).

 blog.DailyDoseofDS.com

 33

Why Correlation (and Other
Summary Statistics) Can Be
Misleading

Many data scientists solely rely on the correlation matrix to study
the association between variables.

But unknown to them, the obtained statistic can be heavily driven
by outliers.

This is evident from the image above.

The addition of just two outliers drastically changed:

• the correlation
• the regression fit

Thus, plotting the data is highly important.

 blog.DailyDoseofDS.com

 34

This can save you from drawing wrong conclusions, which you
may have drawn otherwise by solely looking at the summary
statistics.

One thing that I often do when using a correlation matrix is
creating a PairPlot as well (shown below).

This lets me infer if the scatter plot of two variables and their
corresponding correlation measure resonate with each other or
not.

! Over to you: What are some other measures you take when
using summary statistics?

 blog.DailyDoseofDS.com

 35

MissForest: A Better Alternative To
Zero (or Mean) Imputation

Replacing (imputing) missing values with mean or zero or any
other fixed value:

• alters summary statistics
• changes the distribution
• inflates the presence of a specific value

This can lead to:

• inaccurate modeling
• incorrect conclusions, and more.

Instead, always try to impute missing values with more precision.

In one of the earlier posts, we discussed kNN imputer. Today’s
post builds on that by addressing its limitations, which are:

1. High run-time for imputation — especially for high-
dimensional datasets.

2. Issues with distance calculation in case of categorical non-
missing features.

3. Requires feature scaling, etc.

MissForest imputer is another reliable choice for missing value
imputation.

As the name suggests, it imputes missing values using the
Random Forest algorithm.

The following figure depicts how it works:

 blog.DailyDoseofDS.com

 36

Visual illustration of MissForest imputer

• Step 1: To begin, impute the missing feature with a random
guess — Mean, Median, etc.

• Step 2: Model the missing feature using Random Forest.
• Step 3: Impute ONLY originally missing values using

Random Forest’s prediction.
• Step 4: Back to Step 2. Use the imputed dataset from Step

3 to train the next Random Forest model.
• Step 5: Repeat until convergence (or max iterations).

In case of multiple missing features, the idea (somewhat) stays
the same:

 blog.DailyDoseofDS.com

 37

• Impute features sequentially in increasing order
missingness — features with fewer missing values are
imputed first.

Its effectiveness over Mean/Zero imputation is evident from the
image below.

 blog.DailyDoseofDS.com

 38

• Mean/Zero alters the summary statistics and distribution.
• MissForest imputer preserves them.

What’s more, MissForest can impute even if the data has
categorical non-missing features.

MissForest is based on Random Forest, so one can impute from
categorical and continuous data.

Get started with MissForest imputer: MissingPy MissForest.

 blog.DailyDoseofDS.com

 39

A Visual and Intuitive Guide to The
Bias-Variance Problem

The concepts of overfitting and underfitting are pretty well
understood by most folks.

Yet, here’s another neat way to understand them intuitively.

Imagine you want to estimate a probability density function
(PDF) using a histogram.

Your estimation entirely depends on the bin width:

• Creating small bins will overfit the PDF. This leads to high
variance.

• Creating large bins will underfit the PDF. This leads to high
bias.

This is depicted in the image above.

 blog.DailyDoseofDS.com

 40

Overall, the whole bias-variance problem is about finding the
optimal bin width.

I first read this analogy in the book “All of Statistics” a couple of
years back and found it to be pretty intuitive and neat.

Here’s the book if anyone’s interested in learning more: All of
Statistics PDF. Page 306 inspired today’s post.

Hope that helped :)

 blog.DailyDoseofDS.com

 41

The Most Under-appreciated
Technique To Speed-up Python

Python’s default interpreter — CPython, isn’t smart.

It serves as a standard interpreter for Python and offers no
built-in optimization.

Instead, use the Cython module.

CPython and Cython are different. Don’t get confused
between the two.

Cython converts your Python code into C, which is fast and
efficient.

Steps to use the Cython module:

• Load the Cython module (in a separate cell of the
notebook): %load_ext Cython.

• Add the Cython magic command at the top of the
cell: %%cython -a.

• When using functions, specify their parameter data
type.

def func(int number):
 ...

• Define every variable using the “cdef” keyword and
specify its data type.

cdef int a = 10

Once done, Cython will convert your Python code to C, as
depicted below:

 blog.DailyDoseofDS.com

 42

Cython converts Python code to C

This will run at native machine code speed. Just invoke the
method:
>>> foo_c(2)

The speedup is evident from the image below:

 blog.DailyDoseofDS.com

 43

• Python code is slow.
• But Cython provides a 100x speedup.

Why does this work?

Essentially, Python is dynamic in nature.

For instance, you can define a variable of a specific type.
But later, you can change it to some other type.
a = 10
a = "hello" # Perfectly legal in Python

These dynamic manipulations come at the cost of run time.
They also introduce memory overheads.

However, Cython lets you restrict Python’s dynamicity.

We avoid the above overheads by explicitly specifying the
variable data type.
cdef int a = 10

a = "hello" ## Raises error

The above declaration restricts the variable to a specific
data type. This means the program would never have to
worry about dynamic allocations.

This speeds up run-time and reduces memory overheads.

Isn’t that cool?

 blog.DailyDoseofDS.com

 44

The Overlooked Limitations of Grid
Search and Random Search

Hyperparameter tuning is a tedious task in training ML models.

Typically, we use two common approaches for this:

• Grid search
• Random search

But they have many limitations.

For instance:

• Grid search performs an exhaustive search over all
combinations. This is computationally expensive.

• Grid search and random search are restricted to the
specified hyperparameter range. Yet, the ideal
hyperparameter may exist outside that range.

 blog.DailyDoseofDS.com

 45

They can ONLY perform discrete searches, even if the
hyperparameter is continuous.

Grid search and random search can only try discrete values for
continuous hyperparameters

To this end, Bayesian Optimization is a highly underappreciated
yet immensely powerful approach for tuning hyperparameters.

It uses Bayesian statistics to estimate the distribution of the best
hyperparameters.

This allows it to take informed steps to select the next set of
hyperparameters. As a result, it gradually converges to an optimal
set of hyperparameters much faster.

The efficacy is evident from the image below.

 blog.DailyDoseofDS.com

 46

Bayesian optimization leads the model to the same F1 score but:

• it takes 7x fewer iterations
• it executes 5x faster
• it reaches the optimal configuration earlier

But how does it exactly work, and why is it so effective?

What is the core intuition behind Bayesian optimization?

How does it optimally reduce the search space of the
hyperparameters?

If you are curious, then this is precisely what we are learning
in today’s extensive machine learning deep dive.

Bayesian Optimization Article

 blog.DailyDoseofDS.com

 47

The idea behind Bayesian optimization appeared to be extremely
compelling to me when I first learned it a few years back.

Learning about this optimized hyperparameter tuning and
utilizing them has been extremely helpful to me in building large
ML models quickly.

Thus, learning about Bayesian optimization will be immensely
valuable if you envision doing the same.

Thus, today’s article covers:

• Issues with traditional hyperparameter tuning approaches.
• What is the motivation for Bayesian optimization?
• How does Bayesian optimization work?
• The intuition behind Bayesian optimization.
• Results from the research paper that proposed Bayesian

optimization for hyperparameter tuning.
• A hands-on Bayesian optimization experiment.
• Comparing Bayesian optimization with grid search and

random search.
• Analyzing the results of Bayesian optimization.
• Best practices for using Bayesian optimization.

! Interested folks can read it here: Bayesian Optimization
for Hyperparameter Tuning.

Hope you will learn something new today :)

 blog.DailyDoseofDS.com

 48

An Intuitive Guide to Generative and
Discriminative Models in Machine
Learning

Many machine learning models can be classified into two
categories:

• Generative
• Discriminative

This is depicted in the image above.

Today, let’s understand what they are.

Discriminative models

 blog.DailyDoseofDS.com

 49

Discriminative models:

• learn decision boundaries that separate different classes.
• maximize the conditional probability: P(Y|X) — Given an

input X, maximize the probability of label Y.
• are meant explicitly for classification tasks.

Examples include:

• Logistic regression
• Random Forest
• Neural Networks
• Decision Trees, etc.

Generative models

 blog.DailyDoseofDS.com

 50

Generative models:

• maximize the joint probability: P(X, Y)
• learn the class-conditional distribution P(X|Y)
• are typically not meant for classification tasks.

Examples include:

• Naive Bayes
• Linear Discriminant Analysis (LDA)
• Gaussian Mixture Models, etc.

We covered Joint and Conditional probability before. Read this
post if you wish to learn what they are: A Visual Guide to Joint,
Marginal and Conditional Probabilities.

As generative models learn the underlying distribution, they can
generate new samples.

 blog.DailyDoseofDS.com

 51

However, this is not possible with discriminative models.

Furthermore, generative models possess discriminative
properties, i.e., they can be used for classification tasks (if
needed).

 blog.DailyDoseofDS.com

 52

However, discriminative models do not possess generative
properties.

Let’s consider an example.

Imagine yourself as a language classification system.

There are two ways you can classify languages.

1. Learn every language and then classify a new language
based on acquired knowledge.

2. Understand some distinctive patterns in each language
without truly learning the language. Once done, classify a
new language.

Can you figure out which of the above is generative and which
one is discriminative?

The first approach is generative. This is because you have
learned the underlying distribution of each language.

In other words, you learned the joint distribution P(Words, Language).

 blog.DailyDoseofDS.com

 53

Moreover, as you understand the underlying distribution, now
you can generate new sentences, can’t you?

The second approach is a discriminative approach. This is
because you only learned specific distinctive patterns of each
language.

It is like:

• If so and so words appear, it is likely “Langauge A.”
• If this specific set of words appear, it is likely “Langauge

B.”
• and so on.

In other words, you learned the conditional
distribution P(Language|Words).

Here, can you generate new sentences now? No, right?

 blog.DailyDoseofDS.com

 54

This is the difference between generative and discriminative
models.

Also, the above description might persuade you that generative
models are more generally useful, but it is not true.

This is because generative models have their own modeling
complications.

For instance, typically, generative models require more data than
discriminative models.

Relate it to the language classification example again.

Imagine the amount of data you would need to learn all languages
(generative approach) vs. the amount of data you would need to
understand some distinctive patterns (discriminative approach).

Typically, discriminative models outperform generative models
in classification tasks.

 blog.DailyDoseofDS.com

 55

Feature Scaling is NOT Always
Necessary

Feature scaling is commonly used to improve the performance
and stability of ML models.

This is because it scales the data to a standard range. This
prevents a specific feature from having a strong influence on the
model’s output.

Different scales of columns

For instance, in the image above, the scale of Income could
massively impact the overall prediction. Scaling both features to
the same range can mitigate this and improve the model’s
performance.

But is it always necessary?

While feature scaling is often crucial, knowing when to do it is
also equally important.

Note that many ML algorithms are unaffected by scale. This is
evident from the image below.

 blog.DailyDoseofDS.com

 56

As shown above:

• Logistic regression, SVM Classifier, MLP, and kNN do
better with feature scaling.

• Decision trees, Random forests, Naive bayes, and Gradient
boosting are unaffected.

Consider a decision tree, for instance. It splits the data based on
thresholds determined solely by the feature values, regardless of
their scale.

 blog.DailyDoseofDS.com

 57

Decision tree

Thus, it’s important to understand the nature of your data and the
algorithm you intend to use.

You may never need feature scaling if the algorithm is insensitive
to the scale of the data.

! Over to you: What other algorithms typically work well
without scaling data? Let me know :)

 blog.DailyDoseofDS.com

 58

Why Sigmoid in Logistic Regression?

Logistic regression returns the probability of a binary outcome (0
or 1).

We all know logistic regression does this using the sigmoid
function.

But why?

 blog.DailyDoseofDS.com

 59

In other words, have you ever wondered why we use Sigmoid in
logistic regression?

The most common reason we get to hear is that Sigmoid maps all
real values to the range [0,1].

Sigmoid maps all real values to the range [0,1]

But there are infinitely many functions that can do that.

What is so special about Sigmoid?

What’s more, how can we be sure that the output of Sigmoid is
indeed a probability?

See, as discussed above, logistic regression output is interpreted
as a probability.

 blog.DailyDoseofDS.com

 60

But this raises an essential question: “Can we confidently treat
the output of sigmoid as a genuine probability?”

It is important to consider that not every numerical value lying
within the interval of [0,1] guarantees that it is a legitimate
probability.

In other words, just outputting a number between [0,1] isn’t
sufficient for us to start interpreting it as a probability.

Instead, the interpretation must stem from the formulation of
logistic regression and its assumptions.

So where did the Sigmoid come from?

If you have never understood this, then…

This is precisely what we are discussing in this today’s article,
which is available for free for everyone.

Taken from the Sigmoid Article

 blog.DailyDoseofDS.com

 61

We are covering:

• The common misinterpretations that explain the origin
of Sigmoid.

• Why are these interpretations wrong?
• What an ideal output of logistic regression should look

like.
• How to formulate the origin of Sigmoid using a

generative approach under certain assumptions.
• What if the assumptions don’t hold true.
• How the generative approach can be translated into

the discriminative approach?
• Best practices while using generative and

discriminative approaches.

Hope you will get to learn something new :)

The article is available for free to everyone.

! Interested folks can read it here: Why Do We Use
Sigmoid in Logistic Regression?

 blog.DailyDoseofDS.com

 62

Build Elegant Data Apps With The
Coolest Mito-Streamlit Integration

Personally, I am a big fan of no-code data analysis tools.
They are extremely useful in eliminating repetitive code
across projects—thereby boosting productivity.

Yet, most no-code tools are often limited in terms of the
functionality they support. Thus, flexibility is usually a big
challenge while using them.

Mito is an incredible open-source tool that lets you analyze
data in a spreadsheet interface.

With its latest update, Mito spreadsheets are now
compatible with Streamlit-based data apps.

As a result, you can now integrate a Mito sheet directly into
a Streamlit data app.

A demo is shown below:

 blog.DailyDoseofDS.com

 63

This is incredibly useful for:

• Creating and sharing interactive data applications
• Allowing non-technical users to explore data
• Automating data manipulation
• Providing instructions for other users as they explore

our data
• Presenting visualizations and insights in a data app

on the fly, and more.

What’s more, Mito recently supercharged its spreadsheet
interface with AI. As a result, one can analyze data directly
with text prompts.

Isn’t that cool?

I’m always curious to read your comments. What do you
think about this cool feature addition to Mito? Let me know
:)

! Get started with Mito-Streamlit integration
here: Mito-Streamlit.

 blog.DailyDoseofDS.com

 64

A Simple and Intuitive Guide to
Understanding Precision and Recall

I have seen many folks struggling to intuitively understand
Precision and Recall.

These fairly straightforward metrics often intimidate many.

Yet, adopting the Mindset Technique can be incredibly helpful.

Let me walk you through it today.

For simplicity, we’ll call the "Positive class" as our class of
interest.

Precision

Formally, Precision answers the following question:

“What proportion of positive predictions were actually
positive?”

Let’s understand that from a mindset perspective.

When you are in a Precision Mindset, you don’t care about
getting every positive sample correctly classified.

But it’s important that every positive prediction you get should
actually be positive.

The illustration below is an example of high Precision. All
positive predictions are indeed positive, even though some
positives have been left out.

 blog.DailyDoseofDS.com

 65

Precision Mindset: All Positive predictions are actually positive,
even though some have been left out

For instance, consider a book recommendation system. Say a
positive prediction means you’d like the recommended book.

In a Precision Mindset, you are okay if the model does not
recommend all good books in the world.

Precision Mindset: It’s okay to miss out on some good books but
recommend only good books

But what it recommends should be good.

So even if this system recommended only one book and you liked
it, this gives a Precision of 100%.

 blog.DailyDoseofDS.com

 66

This is because what it classified as “Positive” was indeed
“Positive.”

To summarize, in a high Precision Mindset, all positive
predictions should actually be positive.

Recall

Recall is a bit different. It answers the following question:

“What proportion of actual positives was identified correctly
by the model?”

When you are in a Recall Mindset, you care about getting each
and every positive sample correctly classified.

It’s okay if some positive predictions were not actually positive.

But all positive samples should get classified as positive.

The illustration below is an example of high recall. All positive
samples were classified correctly as positive, even though some
were actually negative.

Recall Mindset: All positive samples are correctly classified

For instance, consider an interview shortlisting system based on
their resume. A positive prediction means that the candidate
should be invited for an interview.

 blog.DailyDoseofDS.com

 67

In a Recall Mindset, you are okay if the model selects some
incompetent candidates.

Recall Mindset: Just focus on correctly classifying all positive
samples

But it should not miss out on inviting any skilled candidate.

So even if this system says that all candidates (good or bad) are
fit for an interview, it gives you a Recall of 100%.

This is because it didn’t miss out on any of the positive samples.

Which metric to choose entirely depends on what’s important to
the problem at hand:

Optimize Precision if:

1. You care about getting ONLY quality (or positive)
predictions.

2. You are okay if some quality (or positive) samples are left
out.

Optimize Recall if:

 blog.DailyDoseofDS.com

 68

1. You care about getting ALL quality (or positive) samples
correct.

2. You are okay if some non-quality (or negative) samples
also come along.

I hope that was helpful :)

! Over to you: What analogy did you first use to understand
Precision and Recall?

 blog.DailyDoseofDS.com

 69

Skimpy: A Richer Alternative to
Pandas' Describe Method

Pandas' describe method is pretty naive.

It hardly highlights any key information about the data.

Instead, try Skimpy.

It is a Jupyter-based tool that provides a standardized and
comprehensive data summary.

By invoking a single function, you can generate the above report
in seconds.

This includes:

• data shape
• column data types
• column summary statistics
• distribution chart,
• missing stats, etc.

What's more, the summary is grouped by datatypes for faster
analysis.

Get started with Skimpy here: Skimpy.

 blog.DailyDoseofDS.com

 70

 blog.DailyDoseofDS.com

 71

A Common Misconception About
Model Reproducibility

Today I want to discuss something extremely important about
ML model reproducibility.

Imagine you trained an ML model, say a neural network.

It gave a training accuracy of 95% and a test accuracy of 92%.

You trained the model again and got the same performance.

Will you call this a reproducible experiment?

Think for a second before you read further.

Well, contrary to common belief, this is not what reproducibility
means.

To understand better, consider this illustration:

 blog.DailyDoseofDS.com

 72

Here, we feed the input data to neural networks with the same
architecture but different randomizations. Next, we visualize the
transformation using a 2D dummy layer, as I depicted in one of
my previous posts below:

Data transformation in a neural network (Post Link)

All models separate the data pretty well and give 100% accuracy,
don’t they?

Yet, if you notice closely, each model generates varying data
transformations (or decision boundaries).

Now will you call this reproducible?

No, right?

It is important to remember that reproducibility is NEVER
measured in terms of performance metrics.

Instead, reproducibility is ensured when all sources of
randomization are reproducible.

 blog.DailyDoseofDS.com

 73

It is because two models with the same architecture yet different
randomization, can still perform equally well.

Different randomization may still lead to the same accuracy

But that does not make your experiment reproducible.

Instead, it is achieved when all sources of randomization are
reproducible.

And that is why it is also recommended to set seeds for random
generators

Once we do that, reproducibility will automatically follow.

But do you know that besides building a reproducible pipeline,
there’s another important yet overlooked aspect, especially in
data science projects?

It’s testing the pipeline.

One of the biggest hurdles data science teams face is transitioning
their data-driven pipeline from Jupyter Notebooks to an
executable, reproducible, error-free, and organized pipeline.

 blog.DailyDoseofDS.com

 74

Jupyter to data science pipeline

And this is not something data scientists are particularly fond of
doing.

Yet, this is an immensely critical skill that many overlook.

To help you develop that critical skill, this is precisely what we
are discussing in today’s member-only blog.

Blog on testing a data science pipeline using Pytest.

Testing is already a job that data scientists don’t look forward to
with much interest.

Considering this, Pytest makes it extremely easy to write test
suites, which in turn, immensely helps in developing reliable data
science projects.

You will learn the following:

• Why are automation frameworks important?

 blog.DailyDoseofDS.com

 75

• What is Pytest?
• How it simplifies pipeline testing?
• How to write and execute tests with Pytest?
• How to customize Pytest’s test search?
• How to create an organized testing suite using Pytest

markers?
• How to use fixtures to make your testing suite concise and

reliable?
• and more.

All in all, building test suites is one of the best skills you can
develop to build large and reliable data science pipelines.

! Interested folks can read it here: Develop an Elegant Testing
Framework For Python Using Pytest.

 blog.DailyDoseofDS.com

 76

The Biggest Limitation Of Pearson
Correlation Which Many Overlook

Pearson correlation is commonly used to determine the
association between two continuous variables.

Many frameworks (in Pandas, for instance) have it as their
default correlation metric.

Yet, unknown to many, Pearson correlation:

• only measures the linear relationship.
• penalizes a non-linear yet monotonic association.

Pearson correlation only measures the linear relationship

Instead, Spearman correlation is a better alternative.

It assesses monotonicity, which can be linear as well as non-
linear.

Monotonicity in data

 blog.DailyDoseofDS.com

 77

This is evident from the illustration below:

Pearson vs. Spearman on linear and non-linear data

• Pearson and Spearman correlation is the same on linear
data.

• But Pearson correlation underestimates a non-linear
association.

Spearman correlation is also useful when data is ranked or
ordinal.

! Over to you: What are some other alternatives that address
Pearson's limitations?

 blog.DailyDoseofDS.com

 78

Gigasheet: Effortlessly Analyse Upto 1
Billion Rows Without Any Code
Traditional Python-based tools become increasingly ineffective
and impractical as you move towards scale.

Python-based solutions on small datasets vs. large datasets

Such cases demand:

• appropriate infrastructure for data storage and
manipulation.

• specialized expertise in data engineering, and more.

…which is not feasible at times.

Gigasheet is a no-code tool that seamlessly addresses these pain
points.

Think of it like a combination of Excel and Pandas with no scale
limitations.

 blog.DailyDoseofDS.com

 79

As shown below, I used Gigasheet to load a CSV file with 1
Billion rows and 47 GB in size, which is massive.

Loading 1B rows with Gigasheet.

You can perform any data analysis/engineering tasks by simply
interacting with a UI.

Thus, you can do all of the following without worrying about any
infra issues:

• Explore any large dataset — even as big as 1 Billion
rows without code.

 blog.DailyDoseofDS.com

 80

• Perform almost all tabular operations you would typically
do, such as:

Execute tabular data operations

o merge,
o plot,
o group,

 blog.DailyDoseofDS.com

 81

o sort,
o summary stats, etc.

• Import data from any source like AWS S3, Drive,
databases, etc., and analyze it, and more.

What’s more, using Gigasheet’s Sheet Assistant, you can also
interact with your data by providing text instructions.

Lastly, Gigasheet also provides an API. This allows you to:

• automate any repetitive tasks
• schedule imports and exports, and much more.

To summarize, Gigasheet immensely simplifies tabular data
exploration tasks.

Anyone with or without data engineering skills can use Gigasheet
for tabular tasks, directly from a UI.

Isn’t that cool?

! Get started with Gigasheet here: Gigasheet.

 blog.DailyDoseofDS.com

 82

Why Mean Squared Error (MSE)?

Say you wish to train a linear regression model. We know that we
train it by minimizing the squared error:

But have you ever wondered why we specifically use the
squared error?

See, many functions can potentially minimize the difference
between observed and predicted values. But of all the possible
choices, what is so special about the squared error?

In my experience, people often say:

• Squared error is differentiable. That is why we use it as a
loss function. WRONG.

• It is better than using absolute error as squared error
penalizes large errors more. WRONG.

 blog.DailyDoseofDS.com

 83

Sadly, each of these explanations are incorrect.

But approaching it from a probabilistic perspective helps us truly
understand why the squared error is the most ideal choice.

Let’s begin.

In linear regression, we predict our target variable y using the
inputs X as follows:

Here, epsilon is an error term that captures the random noise for a
specific data point (i).

We assume the noise is drawn from a Gaussian distribution with
zero mean based on the central limit theorem:

Thus, the probability of observing the error term can be written
as:

 blog.DailyDoseofDS.com

 84

Substituting the error term from the linear regression equation,
we get:

This is called the distribution of y given x; when parametrized by
θ

For a specific set of parameters θ, the above tells us the
probability of observing a data point (i).

Next, we can define the likelihood function as follows:

The likelihood is a function of θ. It means that by varying θ, we
can fit a distribution to the observed data and quantify the
likelihood of observing it.

We further write it as a product for individual data points because
we assume all observations are independent.

 blog.DailyDoseofDS.com

 85

The likelihood of observing all observations is the same as the
product of observing individual observations

Thus, we get:

Likelihood function

Since the log function is monotonic, we use the log-likelihood
and maximize it. This is called maximum likelihood estimation
(MLE).

Taking the log on both sides in the likelihood function

Simplifying, we get:

 blog.DailyDoseofDS.com

 86

To reiterate, the objective is to find the θ that maximizes the
above expression.

But the first term is independent of θ. Thus, maximizing the
above expression is equivalent to minimizing the second term.

And if you notice closely, it’s precisely the squared error.

Thus, you can maximize the log-likelihood by minimizing the
squared error.

And this is the origin of least-squares in linear regression.

 blog.DailyDoseofDS.com

 87

See, there’s clear proof and reasoning behind for using squared
error as a loss function in linear regression.

Nothing comes from thin air in machine learning :)

But did you notice that in this derivation, we made a lot of
assumptions?

Firstly, we assumed the noise was drawn from a Gaussian
distribution. But why?

We assumed independence of observations. Why and what if it
does not hold true?

Next, we assumed that each error term is drawn from a
distribution with the same variance σ. But what if it looks like
this:

Each error term is drawn from a distribution with a different
variance

In that case, the squared error will come out to be:

 blog.DailyDoseofDS.com

 88

How to handle this?

This is precisely what I have discussed in today’s member-only
blog.

In other words, have you ever wondered about the origin of linear
regression assumptions? The assumptions just can’t appear from
thin air, can they?

Thus today’s deep dive walks you through the origin of each of
the assumptions of linear regression in a lot of detail.

Blog on the origin of assumptions of linear regression

It covers the following:

• An overview of linear regression and why we use Mean
Squared Error in linear regression.

• What is the assumed data generation process of linear
regression?

• What are the critical assumptions of linear regression?
• Why error term is assumed to follow a normal distribution?
• Why are these assumptions essential?
• How are these assumptions derived?
• How to validate them?
• What measures can we take if the assumptions are violated?
• Best practices.

 blog.DailyDoseofDS.com

 89

All in all, a literal deep-dive on linear regression. The more you
will learn, the more you will appreciate the beauty of linear
regression :)

! Interested folks can read it here: Where Did The
Assumptions of Linear Regression Originate From?

 blog.DailyDoseofDS.com

 90

A More Robust and Underrated
Alternative To Random Forests

We know that Decision Trees always overfit.

This is because by default, a decision tree (in sklearn’s
implementation, for instance), is allowed to grow until all leaves
are pure.

As the model correctly classifies ALL training instances, this
leads to:

• 100% overfitting, and
• poor generalization

Random Forest address this by introducing randomness in two
ways:

• While creating a bootstrapped dataset.
• While deciding a node’s split criteria by choosing candidate

features randomly.

Yet, the chances of overfitting are still high.

The Extra Trees algorithm is an even more robust alternative to
Random Forest.

! Note:

• Extra Trees does not mean more trees.
• Instead, it should be written as ExtRa, which

means Extra Randomized.

ExtRa Trees are Random Forests with an additional source of
randomness.

Here’s how it works:

 blog.DailyDoseofDS.com

 91

• Create a bootstrapped dataset for each tree (same as RF)
• Select candidate features randomly for node splitting (same

as RF)
• Now, Random Forest calculates the best split threshold for

each candidate feature.
• But ExtRa Trees chooses this split threshold randomly.

Random Forest vs. ExtRa Trees

• This is the source of extra randomness.
• After that, the best candidate feature is selected.

This further reduces the variance of the model.

The effectiveness is evident from the image below:

 blog.DailyDoseofDS.com

 92

Decision Tree vs. Random Forest vs. ExtRa Trees
• Decision Trees entirely overfit
• Random Forests work better
• Extra Trees performs even better

⚠ A cautionary measure while using ExtRa Trees from
Sklearn.

By default, the bootstrap flag is set to False.

Make sure you run it with bootstrap=True, otherwise, it will use the
whole dataset for each tree.

! Over to you: Can you think of another way to add randomness
to Random Forest?

 blog.DailyDoseofDS.com

 93

The Most Overlooked Problem With
Imputing Missing Values Using Zero
(or Mean)

Replacing (imputing) missing values with mean or zero or any
other fixed value:

• alters summary statistics
• changes the distribution
• inflates the presence of a specific value

This can lead to:

• inaccurate modeling
• incorrect conclusions, and more.

Instead, always try to impute missing values with more precision.

kNN imputer is often a great choice in such cases.

It imputes missing values using the k-Nearest Neighbors
algorithm.

Missing features are imputed by running a kNN on non-missing
feature values.

The following image depicts how it works:

 blog.DailyDoseofDS.com

 94

• Step 1: Select a row (r) with a missing value.
• Step 2: Find its k nearest neighbors using the non-missing

feature values.
• Step 3: Impute the missing feature of the row (r) using the

corresponding non-missing values of k nearest neighbor
rows.

• Step 4: Repeat for all rows with missing values.

Its effectiveness over Mean/Zero imputation is evident from the
image below.

Mean and Zero imputation vs. kNN imputation

• Mean/Zero alters the summary statistics and distribution.
• kNN imputer preserves them.

Get started with kNN imputer: Sklearn Docs.

 blog.DailyDoseofDS.com

 95

A Visual Guide to Joint, Marginal and
Conditional Probabilities

This issue had mathema6cal deriva6ons and many diagrams. Please read it here:

hBps://www.blog.dailydoseofds.com/p/a-visual-guide-to-joint-marginal

 blog.DailyDoseofDS.com

 96

Jupyter Notebook 7: Possibly One Of
The Best Updates To Jupyter Ever

This is probably one of the best updates to Jupyter Notebook
ever.

Jupyter has announced the release of Jupyter Notebook 7

The developers call it one of the most significant releases in
years.

Here are some highlights:

• Real-time collaboration: Share notebooks with others and
collaborate. Extremely useful for teams.

• Interactive debugging: Debug code cell by cell and
inspect variables.

• Internationalization: Change language
• Dark mode
• Table of contents

The demo above shows real-time collaboration between two
notebooks.

Isn’t that cool?

The update is in beta. You can read more about it here: Jupyter
Notebook 7.

! Over to you: Which of these new updates is your favorite?

Read the full issue here to watch an animation of real-time
collaboration feature:
https://www.blog.dailydoseofds.com/p/jupyter-notebook-7-one-
of-the-best

 blog.DailyDoseofDS.com

 97

How to Find Optimal Epsilon Value
For DBSCAN Clustering?

In DBSCAN, determining the epsilon parameter is often tricky.

Yet, the Elbow curve is often helpful in determining it.

To begin, DBSCAN has three hyperparameters:

1. Epsilon: two points are considered neighbors if they are
closer than Epsilon.

 blog.DailyDoseofDS.com

 98

2. min_samples: Min neighbors for a point to be classified as
a core point.

3. The distance metric.

We can use the Elbow Curve to find an optimal value of Epsilon:

Set k as the min_samples hyperparameter.

For every data point, plot the distance to its kth nearest neighbor
(in increasing order).

The optimal value of Epsilon is found near the elbow point.

Why does it work?

Recall that we are measuring the distance to a specific (kth)
neighbor for all points.

Thus, the elbow point suggests a distance to a more isolated point
or a point in a different cluster.

The point where change is most pronounced hints towards an
optimal epsilon.

The efficacy is evident from the image above.

Selecting the elbow value provides better clustering results over
another value.

! Over to you: What methods do you use to find an optimal
epsilon for DBSCAN?

 blog.DailyDoseofDS.com

 99

Why R-squared is a Flawed
Regression Metric

R2 is quite popularly used all across data science and statistics to
assess a model.

Yet, contrary to common belief, it is often interpreted as a
performance metric for evaluating a model, when, in reality, it is
not.

Let’s understand!

R2 tells the fraction of variability in the outcome variable
captured by a model.

It is defined as follows:

In simple words, variability depicts the noise in the outcome
variable (y).

Left: The outcome variable has zero variance. Right: The
outcome variable has a non-zero variance.

Thus, the more variability captured, the higher the R2.

 blog.DailyDoseofDS.com

 100

This means that solely optimizing for R2 as a performance
measure:

• promotes 100% overfitting.
• leads us to engineer the model in a way that captures

random noise instead of underlying patterns.

It is important to note that:

• R2 is NOT a measure of predictive power.
• Instead, R2 is a fitting measure.

Thus, you should NEVER use it to measure goodness of fit.

This is evident from the image below:

• An overly complex and overfitted model almost gets a
perfect R2 of 1.

• A better and more generalized model gets a lower R2 score.

 blog.DailyDoseofDS.com

 101

Some other flaws of R2 are:

• R2 always increases as you add more features, even if they
are random noise.

• In some cases, one can determine R2 even before fitting a
model, which is weird.

! Read my full blog on the A-Z of R2, what it is, its limitations,
and much more here: Flaws of R2 Metric.

! Over to you: What are some other flaws in R2?

 blog.DailyDoseofDS.com

 102

75 Key Terms That All Data Scientists
Remember By Heart

Data science has a diverse glossary. The sheet lists the 75 most
common and important terms that data scientists use almost every
day.

 blog.DailyDoseofDS.com

 103

Thus, being aware of them is extremely crucial.

• A:
o Accuracy: Measure of the correct predictions divided

by the total predictions.
o Area Under Curve: Metric representing the area

under the Receiver Operating Characteristic (ROC)
curve, used to evaluate classification models.

o ARIMA: Autoregressive Integrated Moving
Average, a time series forecasting method.

• B:
o Bias: The difference between the true value and the

predicted value in a statistical model.
o Bayes Theorem: Probability formula that calculates

the likelihood of an event based on prior knowledge.
o Binomial Distribution: Probability distribution that

models the number of successes in a fixed number of
independent Bernoulli trials.

• C:
o Clustering: Grouping data points based on

similarities.
o Confusion Matrix: Table used to evaluate the

performance of a classification model.
o Cross-validation: Technique to assess model

performance by dividing data into subsets for training
and testing.

• D:
o Decision Trees: Tree-like model used for

classification and regression tasks.
o Dimensionality Reduction: Process of reducing the

number of features in a dataset while preserving
important information.

o Discriminative Models: Models that learn the
boundary between different classes.

• E:

 blog.DailyDoseofDS.com

 104

o Ensemble Learning: Technique that combines
multiple models to improve predictive performance.

o EDA (Exploratory Data Analysis): Process of
analyzing and visualizing data to understand its
patterns and properties.

o Entropy: Measure of uncertainty or randomness in
information.

• F:
o Feature Engineering: Process of creating new

features from existing data to improve model
performance.

o F-score: Metric that balances precision and recall for
binary classification.

o Feature Extraction: Process of automatically
extracting meaningful features from data.

• G:
o Gradient Descent: Optimization algorithm used to

minimize a function by adjusting parameters
iteratively.

o Gaussian Distribution: Normal distribution with a
bell-shaped probability density function.

o Gradient Boosting: Ensemble learning method that
builds multiple weak learners sequentially.

• H:
o Hypothesis: Testable statement or assumption in

statistical inference.
o Hierarchical Clustering: Clustering method that

organizes data into a tree-like structure.
o Heteroscedasticity: Unequal variance of errors in a

regression model.
• I:

o Information Gain: Measure used in decision trees to
determine the importance of a feature.

 blog.DailyDoseofDS.com

 105

o Independent Variable: Variable that is manipulated
in an experiment to observe its effect on the
dependent variable.

o Imbalance: Situation where the distribution of
classes in a dataset is not equal.

• J:
o Jupyter: Interactive computing environment used for

data analysis and machine learning.
o Joint Probability: Probability of two or more events

occurring together.
o Jaccard Index: Measure of similarity between two

sets.
• K:

o Kernel Density Estimation: Non-parametric method
to estimate the probability density function of a
continuous random variable.

o KS Test (Kolmogorov-Smirnov Test): Non-
parametric test to compare two probability
distributions.

o KMeans Clustering: Partitioning data into K clusters
based on similarity.

• L:
o Likelihood: Chance of observing the data given a

specific model.
o Linear Regression: Statistical method for modeling

the relationship between dependent and independent
variables.

o L1/L2 Regularization: Techniques to prevent
overfitting by adding penalty terms to the model's
loss function.

• M:
o Maximum Likelihood Estimation: Method to

estimate the parameters of a statistical model.

 blog.DailyDoseofDS.com

 106

o Multicollinearity: A situation where two or more
independent variables are highly correlated in a
regression model.

o Mutual Information: Measure of the amount of
information shared between two variables.

• N:
o Naive Bayes: Probabilistic classifier based on Bayes

Theorem with the assumption of feature
independence.

o Normalization: Scaling data to have a mean of 0 and
standard deviation of 1.

o Null Hypothesis: Hypothesis of no significant
difference or effect in statistical testing.

• O:
o Overfitting: When a model performs well on training

data but poorly on new, unseen data.
o Outliers: Data points that significantly differ from

other data points in a dataset.
o One-hot encoding: Process of converting categorical

variables into binary vectors.
• P:

o PCA (Principal Component Analysis):
Dimensionality reduction technique to transform data
into orthogonal components.

o Precision: Proportion of true positive predictions
among all positive predictions in a classification
model.

o p-value: Probability of observing a result at least as
extreme as the one obtained if the null hypothesis is
true.

• Q:
o QQ-plot (Quantile-Quantile Plot): Graphical tool to

compare the distribution of two datasets.
o QR decomposition: Factorization of a matrix into an

orthogonal and an upper triangular matrix.

 blog.DailyDoseofDS.com

 107

• R:
o Random Forest: Ensemble learning method using

multiple decision trees to make predictions.
o Recall: Proportion of true positive predictions among

all actual positive instances in a classification model.
o ROC Curve (Receiver Operating Characteristic

Curve): Graph showing the performance of a binary
classifier at different thresholds.

• S:
o SVM (Support Vector Machine): Supervised

machine learning algorithm used for classification
and regression.

o Standardisation: Scaling data to have a mean of 0
and a standard deviation of 1.

o Sampling: Process of selecting a subset of data
points from a larger dataset.

• T:
o t-SNE (t-Distributed Stochastic Neighbor

Embedding): Dimensionality reduction technique for
visualizing high-dimensional data in lower
dimensions.

o t-distribution: Probability distribution used in
hypothesis testing when the sample size is small.

o Type I/II Error: Type I error is a false positive, and
Type II error is a false negative in hypothesis testing.

• U:
o Underfitting: When a model is too simple to capture

the underlying patterns in the data.
o UMAP (Uniform Manifold Approximation and

Projection): Dimensionality reduction technique for
visualizing high-dimensional data.

o Uniform Distribution: Probability distribution
where all outcomes are equally likely.

• V:

 blog.DailyDoseofDS.com

 108

o Variance: Measure of the spread of data points
around the mean.

o Validation Curve: Graph showing how model
performance changes with different hyperparameter
values.

o Vanishing Gradient: Issue in deep neural networks
when gradients become very small during training.

• W:
o Word embedding: Representation of words as dense

vectors in natural language processing.
o Word cloud: Visualization of text data where word

frequency is represented through the size of the word.
o Weights: Parameters that are learned by a machine

learning model during training.
• X:

o XGBoost: Extreme Gradient Boosting, a popular
gradient boosting library.

o XLNet: Generalized Autoregressive Pretraining of
Transformers, a language model.

• Y:
o YOLO (You Only Look Once): Real-time object

detection system.
o Yellowbrick: Python library for machine learning

visualization and diagnostic tools.
• Z:

o Z-score: Standardized value representing how many
standard deviations a data point is from the mean.

o Z-test: Statistical test used to compare a sample mean
to a known population mean.

o Zero-shot learning: Machine learning method where
a model can recognize new classes without seeing
explicit examples during training.

! Over to you: Of course, a lot has been left out here. As an
exercise, can you add more terms to this?

 blog.DailyDoseofDS.com

 109

The Limitation of Static Embeddings
Which Made Them Obsolete

To build models for language-oriented tasks, it is crucial to
generate numerical representations (or vectors) for words.

Text to embedding overview

 blog.DailyDoseofDS.com

 110

This allows words to be processed and manipulated
mathematically and perform various computational operations on
words.

The objective of embeddings is to capture semantic and syntactic
relationships between words. This helps machines understand and
reason about language more effectively.

In the pre-Transformers era, this was primarily done using pre-
trained static embeddings.

Essentially, someone would train and release these word
embeddings for, say, 100k, or 200k common words using deep
learning.

…and other researchers may utilize those embeddings in their
projects.

The most popular models at that time (around 2013-2018ish)
were:

• Glove
• Word2Vec
• FastText, etc.

These embeddings genuinely showed some promising results in
learning the relationships between words.

For instance, running the vector operation (King - Man) + Woman would
return a vector near the word “Queen”.

 blog.DailyDoseofDS.com

 111

(King-Man) approximates to (Queen - Woman)

So while these did capture relative representations of words, there
was a major limitation.

Consider the following two sentences:

• “Convert this data into a table in Excel.”
• “Put this bottle on the table.”

The word “table” conveys two entirely different meanings in the
two sentences.

• The first sentence refers to a “data” specific sense of the
word “table”.

• The second sentence refers to a “furniture” specific sense
of the word “table”.

Yet, static embedding models assigned them the same
representation.

Same embedding for different usages of a word

 blog.DailyDoseofDS.com

 112

Thus, these embeddings didn’t consider that a word may have
different usages in different contexts.

But this changed in the Transformer era, which resulted in
contextualized embeddings models powered by Transformers,
such as:

• BERT: A language model trained using two techniques:

BERT pre-training

o Masked Language Modeling (MLM): Predict a
missing word in the sentence, given the surrounding
words.

o Next Sentence Prediction (NSP).
• DistilBERT: A simple, effective, and lighter version of

BERT which is around 40% smaller:

Training DistilBERT

 blog.DailyDoseofDS.com

 113

o Utilizes a common machine learning strategy called
student-teacher theory.

o Here, the student is the distilled version of BERT,
and the teacher is the original BERT model.

o The student model is supposed to replicate the
teacher model’s behavior.

• ALBERT: A Lite BERT (ALBERT). Uses a couple of
optimization strategies to reduce the size of BERT:

o Eliminates one-hot embeddings at the initial layer by
projecting the words into a low-dimensional space.

o Shares the weights across all the network segments of
the Transformer model.

These were capable of generating context-aware representations,
thanks to their self-attention mechanism.

This would allow embedding models to dynamically generate
embeddings for a word based on the context they were used in.

As a result, if a word would appear in a different context, the
model would get a different representation.

This is precisely depicted in the image below for different uses of
the word “Bank”.

For visualization purposes, the embeddings have been projected
into 2d space using t-SNE.

 blog.DailyDoseofDS.com

 114

Glove vs. BERT on understanding different senses of a word

The static embedding models — Glove and Word2Vec produce
the same embedding for different usages of a word.

However, contextualized embedding models don’t.

In fact, contextualized embeddings understand the different
meanings/senses of the word “Bank”:

• A financial institution
• Sloping land
• A Long Ridge, and more.

Different senses were taken from Priceton’s Wordnet database
here: WordNet.

 blog.DailyDoseofDS.com

 115

As a result, they addressed the major limitations of static
embedding models.

For those who wish to learn in more detail, I published a couple
of research papers on this intriguing topic:

• Interpretable Word Sense Disambiguation with
Contextualized Embeddings.

• A Comparative Study of Transformers on Word Sense
Disambiguation.

These papers discuss the strengths and limitations of many
contextualized embedding models in detail.

! Over to you: What do you think were some other pivotal
moments in NLP research?

 blog.DailyDoseofDS.com

 116

An Overlooked Technique To Improve
KMeans Run-time

The standard KMeans algorithm involves a brute-force approach.

To recall, KMeans is trained as follows:

• Initialize centroids
• Find the nearest centroid for each point
• Reassign centroids
• Repeat until convergence

As a result, the run-time of KMeans depends on four factors:

• Number of iterations (i)
• Number of samples (n)
• Number of clusters (k)
• Number of features (d)

O(i*n*k*d))

In fact, you can add another factor here — “the repetition factor”,
where, we run the whole clustering repeatedly to avoid
convergence issues.

But we are ignoring that for now.

While we cannot do much about the first three, reducing the
number of features is quite possible, yet often overlooked.

Sparse Random Projection is an efficient projection technique for
reducing dimensionality.

Some of its properties are:

• It projects the original data to lower dimensions using a
sparse random matrix.

 blog.DailyDoseofDS.com

 117

• It provides similar embedding quality while being memory
and run-time efficient.

• The similarity and dissimilarity between points are well
preserved.

The visual below shows the run-time comparison of KMeans on:

• Standard high-dimensional data, vs.
• Data projected to lower dimensions using Sparse Random

Projection.

 blog.DailyDoseofDS.com

 118

As shown, Sparse Random Projection provides:

• Similar performance, and
• a MASSIVE run-time improvement of 10x.

This can be especially useful in high-dimensional datasets.

Get started with Sparse Random Projections here: Sklearn Docs.

For more info, here’s the paper that discussed it: Very Sparse
Random Projections.

! Over to you: What are some other ways to improve KMeans
run-time?

 blog.DailyDoseofDS.com

 119

The Most Underrated Skill in
Training Linear Models

Yesterday’s post on Poisson regression was appreciated by many
of you.

Today, I want to build on that and help you cultivate what I think
is one of the MOST overlooked and underappreciated skills in
developing linear models.

I can guarantee that harnessing this skill will give you so much
clarity and intuition in the modeling stages.

But let’s do a quick recap of yesterday’s post before we proceed.

Recap

Having a non-negative response in the training data does not stop
linear regression from outputting negative values.

 blog.DailyDoseofDS.com

 120

Essentially, you can always extrapolate the regression fit for
some inputs to get a negative output.

Extrapolation of the linear regression fit

While this is not an issue per se, negative outputs may not make
sense in cases where you can never have such outcomes.

For instance:

• Predicting the number of calls received.
• Predicting the number of cars sold in a year, etc.

More specifically, the issue arises when modeling a count-based
response, where a negative output wouldn’t make sense.

In such cases, Poisson regression often turns out to be a more
suitable linear model than linear regression.

This is evident from the image below:

 blog.DailyDoseofDS.com

 121

Please read yesterday’s post for in-depth info: Poisson
Regression: The Robust Extension of Linear Regression.

Here, I want you to understand that Poisson regression is no
magic.

It’s just that, in this specific use case, the data generation process
didn’t perfectly align with what linear regression is designed to
handle.

In other words, as soon as we trained a linear regression model
above, we inherently assumed that the data was sampled from a
normal distribution.

But that was not true in this case.

 blog.DailyDoseofDS.com

 122

Instead, it came from a Poisson distribution, which is why
Poisson regression worked better.

Thus, the takeaway is that whenever you train linear
models, always always and always think about the data
generation process.

This goes like this:

• Okay, I have this data.
• I want to fit a linear model through it.
• What information do I get from the label about the data

generation process that can help me select an appropriate
linear model?

 blog.DailyDoseofDS.com

 123

You’d start appreciating the importance of data generation when
you’d realize that literally EVERY extension of linear regression
(or a member of the generalized linear model family) stems from
altering the data generation process.

For instance:

• If the data generation process involves a Normal
distribution → you get linear regression.

• If the data has only positive integers in the response
variable, maybe it came from a Poisson distribution →
and this gives us Poisson regression. This is precisely what
we discussed yesterday.

• If the data has only two targets — 0 and 1, maybe it was
generated using Bernoulli distribution → and this gives
rise to logistic regression.

• If the data has finite and fixed categories (0, 1, 2,…n), then
this hints towards Binomial distribution → and we get
Binomial regression.

See…

Every linear model makes an assumption and is then derived
from an underlying data generation process.

 blog.DailyDoseofDS.com

 124

Thus, developing a habit of stepping back and thinking about the
data generation process will give you so much clarity in the
modeling stages.

I am confident this will help you get rid of that annoying and
helpless habit of relentlessly using a specific sklearn algorithm
without truly knowing why you are using it.

Consequently, you’d know which algorithm to use and, most
importantly, why.

This improves your credibility as a data scientist and allows you
to approach data science problems with intuition and clarity
rather than hit-and-trial.

Hope you learned something new.

 blog.DailyDoseofDS.com

 125

Poisson Regression: The Robust
Extension of Linear Regression

Read the full issue here: hBps://www.blog.dailydoseofds.com/p/poisson-

regression-the-robust-extension

 blog.DailyDoseofDS.com

 126

The Biggest Mistake ML Folks Make
When Using Multiple Embedding
Models

Imagine you have two different models (or sub-networks) in your
whole ML pipeline.

Both generate a representation/embedding of the input in the
same dimensions (say, 200).

 blog.DailyDoseofDS.com

 127

These could also be pre-trained models used to generate
embeddings—Bert, XLNet, etc.

Here, many folks get tempted to make them interact.

They would:

• compare these representations
• compute their Euclidean distance
• compute their cosine similarity, and more.

The rationale is that the representations have the same
dimensions. Thus, they can seamlessly interact.

However, that is NOT true, and you should NEVER do that.

Why?

Even though these embeddings have the same length, they are out
of space.

Out of space means that their axes are not aligned.

To simplify, imagine both embeddings were in a 3D space.

Now, assume that their z-axes are aligned.

But the x-axis of one of them is at an angle to the x-axis of the
other.

 blog.DailyDoseofDS.com

 128

As a result, coordinates from these two spaces are no longer
comparable.

Similarly, comparing the embeddings from two networks would
inherently assume that all axes are perfectly aligned.

But this is highly unlikely because there are infinitely many ways
axes may orient relative to each other.

Thus, the representations can NEVER be compared, unless they
are generated by the same model.

This is a mistake that may cause some serious trouble in your ML
pipeline.

Also, it can easily go unnoticed, so it is immensely crucial to be
aware of this.

Hope that helped!

! Over to you: How do you typically handle embeddings from
multiple models?

 blog.DailyDoseofDS.com

 129

Probability and Likelihood Are Not
Meant To Be Used Interchangeably

In data science and statistics, folks often use “probability” and
“likelihood” interchangeably.

However, Likelihood and probability DO NOT convey the same
meaning.

And the misunderstanding is somewhat understandable, given
that they carry similar meanings in our regular language.

While writing today’s newsletter, I searched for their meaning in
the Cambridge Dictionary.

Here’s what it says:

• Probability: the level of possibility of something
happening or being true/ (Source)

• Likelihood: the chance that something will happen.
(Source)

 blog.DailyDoseofDS.com

 130

It amused me that “likelihood” is the only synonym of
“probability”.

Anyway.

In my opinion, it is crucial to understand that probability and
Likelihood convey very different meanings in data science and
statistics.

Let’s understand!

Probability is used in contexts where you wish to know the
possibility/odds of an event.

For instance, what is the:

• Probability of obtaining an even number in a die roll?
• Probability of drawing an ace of diamonds from a deck?
• and so on…

When translated to ML, probability can be thought of as:

 blog.DailyDoseofDS.com

 131

• What is the probability that a transaction is fraud?
• What is the probability that an image depicts a cat?
• and so on…

Essentially, many classification models, like logistic regression or
a neural network, etc., assign the probability of a specific label
to an input.

When calculating probability, the model's parameters are known.
Also, we assume that they are trustworthy.

For instance, to determine the probability of a head in a coin toss,
we assume and trust that it is a fair coin.

Likelihood, on the other hand, is about explaining events that
have already occurred.

Unlike probability (where parameters are known and assumed to
be trustworthy)...

Likelihood helps us determine if we can trust the parameters in a
model based on the observed data.

Here’s how we use it in the context of data science and machine
learning.

Assume you have collected some 2D data and wish to fit a
straight line with two parameters — slope (m) and intercept (c).

 blog.DailyDoseofDS.com

 132

Here, Likelihood is defined as the support provided by a data
point for some particular parameter values in your model.

Here, you will ask questions like:

• If I model this data with the parameters:
o m=2 and c=1, what is the Likelihood of observing the

data?
o m=3 and c=2, what is the Likelihood of observing the

data?
o and so on…

The above formulation popularly translates into the maximum
likelihood estimation (MLE).

In maximum likelihood estimation, you have some observed data
and you are trying to determine the specific set of parameters (θ)
that maximize the Likelihood of observing the data.

 blog.DailyDoseofDS.com

 133

Using the term “likelihood” is like:

• I have a possible explanation for my data. (In the above
illustration, “explanation” can be thought of as the
parameters you are trying to determine)

• How well my explanation explains what I’ve already
observed? This is precisely quantified using Likelihood.

For instance:

• Observation: The outcomes of 10 coin tosses are
“HHHHHHHTHH”.

• Explanation: I think it is a fair coin (p=0.5).
• What is the Likelihood that my explanation is true based on

the observed data?

To summarize…

It is immensely important to understand that in data science and
statistics, Likelihood and probability DO NOT convey the same
meaning.

 blog.DailyDoseofDS.com

 134

As explained above, they are pretty different.

In Probability:

• We determine the possibility of an event.
• We know the parameters associated with the event and

assume them to be trustworthy.

In Likelihood:

• We have some observations.
• We have an explanation (or parameters).
• Likelihood helps us quantify whether the explanation is

trustworthy.

Hope that helped!

! Over to you: I would love to hear your explanation of
probability and Likelihood.

 blog.DailyDoseofDS.com

 135

SummaryTools: A Richer Alternative
To Pandas' Describe Method.

Summarytools is a Jupyter-based tool that provides a
standardized and comprehensive data summary.

By invoking a single function, you can generate the above report
in seconds.

This includes:

• column statistics,
• data type info,
• frequency,
• distribution chart, and
• and missing stats.

Get started with Summary Tools here: Summary Tools.

 blog.DailyDoseofDS.com

 136

40 NumPy Methods That Data
Scientists Use 95% of the Time

NumPy holds wide applicability in industry and academia due to
its unparalleled potential.

Thus, being aware of its most common methods is necessary for
Data Scientists.

Yet, it is important to understand that whenever you are learning
a new library, mastering/practicing each and every method is not
necessary.

What’s more, this may be practically infeasible and time-
consuming in many cases.

Instead, put Pareto’s principle to work:

 blog.DailyDoseofDS.com

 137

20% of your inputs contribute towards generating 80% of your
outputs.

In other words, there are always some specific methods that are
most widely used.

The above visual depicts the 40 most commonly used methods
for NumPy.

Having used NumPy for over 4 years, I can confidently say that
you will use these methods 95% of the time working with
NumPy.

If you are looking for an in-depth guide, you can read my article
on Medium here: Medium NumPy article.

 blog.DailyDoseofDS.com

 138

An Overly Simplified Guide To
Understanding How Neural Networks
Handle Linearly Inseparable Data

Many folks struggle to truly comprehend how a neural network
learns complex non-linear patterns.

Here’s an intuitive explanation to understand the data
transformations performed by a neural network when modeling
linearly inseparable data.

We know that in a neural network, the data is passed through a
series of transformations at every hidden layer.

 blog.DailyDoseofDS.com

 139

This involves:

• Linear transformation of the data obtained from the
previous layer

• …followed by a non-linearity using an activation function
— ReLU, Sigmoid, Tanh, etc.

• This is depicted below:

For instance, consider a neural network with just one hidden
layer:

 blog.DailyDoseofDS.com

 140

The data is transformed at the hidden layer along with an
activation function.

Lastly, the output of the hidden layer is transformed to obtain the
final output.

It’s time to notice something here.

When the data comes out of the last hidden layer, and it is
progressing towards the output layer for another transformation,
EVERY activation function that ever existed in the network has
already been utilized.

In other words, in any neural network, all sources of non-linearity
— “activation functions”, exist on or before the last hidden layer.

 blog.DailyDoseofDS.com

 141

And while progressing from the last hidden layer to the output
layer, the data will pass through one final transformation before it
spits some output.

But given that the transformation from the last hidden layer to the
output layer is entirely linear (or without any activation function),
there is no further scope for non-linearity in the network.

 blog.DailyDoseofDS.com

 142

On a side note, the transformation from the last hidden layer to
the output layer (assuming there is only one output neuron) can
be thought of as a:

• linear regression model for regression tasks, or,
• logistic regression if you are modeling class probability

with sigmoid function.

Thus, to make accurate predictions, the data received by the
output layer from the last hidden layer MUST BE linearly
separable.

To summarize…

While transforming the data through all its hidden layers and just
before reaching the output layer, a neural network is constantly
hustling to project the data to a latent space where it becomes
linearly separable.

Once it does, the output layer can easily handle the data.

We can also verify this experimentally.

To visualize the input transformation, add a dummy hidden layer
with just two neurons right before the output layer and train the
neural network again.

 blog.DailyDoseofDS.com

 143

Why two neurons?

It’s simple.

So that we can visualize it easily.

We expect that if we plot the activations of this 2D dummy
hidden layer, they should be linearly separable.

The below visual precisely depicts this.

 blog.DailyDoseofDS.com

 144

As we notice above, while the input data was linearly inseparable,
the input received by the output layer is indeed linearly separable.

This transformed data can be easily handled by the output
classification layer.

Hope that helped!

Feel free to respond with any queries that you may have.

! If you wish to experiment yourself, the code is available
here: Notebook.

 blog.DailyDoseofDS.com

 145

2 Mathematical Proofs of Ordinary
Least Squares

Most machine learning algorithms use gradient descent to learn
the optimal parameters.

However, in addition to gradient descent, linear regression can
model data using another technique called ordinary least squares
(OLS).

Ordinary Least Square (OLS):
1. It is a deterministic algorithm. If run multiple times, it will

always converge to the same weights.
2. It always finds the optimal solution.

The above image shows two ways to find the OLS solution of
OLS.
Full issue here: https://www.blog.dailydoseofds.com/p/2-
mathematical-proofs-of-ordinary

 blog.DailyDoseofDS.com

 146

A Common Misconception About Log
Transformation

Log transform is commonly used to eliminate skewness in data.

Yet, it is not always the ideal solution for eliminating skewness.

It is important to note that log transform:

• Does not eliminate left-skewness.
• Only works for right-skewness, that too when the values are

small and positive.

This is also evident from the image above.

It is because the log function grows faster for lower values. Thus,
it stretches out the lower values more than the higher values.

 blog.DailyDoseofDS.com

 147

Graph of log(x)

Thus,

• In case of left-skewness:

Left-skewness with log transform

o The tail exists to the left, which gets stretched out
more than those to the right

o Thus, skewness isn't affected much.
• In case of right-skewness:

 blog.DailyDoseofDS.com

 148

Right-skewness with log transform

o Majority of values and peak exists to the left, which
get stretched out more.

o However, the log function grows slowly when the
values are large. Thus, the impact of stretch is low.

There are a few things you can do:

• See if transformation can be avoided as it inhibits
interpretability.

• If not, try box-cox transform. It is often quite effective,
both for left-skewed and right-skewed data. You can use it
using Scipy’s implementation: Scipy docs.

! Over to you: What are some other ways to eliminate
skewness?

 blog.DailyDoseofDS.com

 149

Raincloud Plots: The Hidden Gem of
Data Visualisation

Visualizing data distributions using box plots and histograms can
be misleading at times.

This is because:

• It is possible to get the same box plot with entirely different
data.

o For instance, consider the illustration below from one
of my previous posts: Use Box Plots With Caution!
They May Be Misleading.

 blog.DailyDoseofDS.com

 150

o We get the same box plot with three different
datasets.

• Altering the number of bins changes the shape of a
histogram.

o Read this post here.

Thus, to avoid misleading conclusions, it is recommended to plot
the data distribution.

Here, jitter (strip) plots and KDE plots are immensely helpful.

One way is to draw them separately and analyze them together, as
shown below. But this is quite tedious.

 blog.DailyDoseofDS.com

 151

Instead, try Raincloud plots.

They provide a concise way to combine and visualize three
different types of plots together.

These include:

• Box plots for data statistics.
• Strip plots for data overview.
• KDE plots for the probability distribution of data.

Raincloud plot with Box, strip and KDE plot at once

Overall, Raincloud plots are an excellent choice for data
visualization.

With Raincloud plots, you can:

• Combine multiple plots to prevent incorrect/misleading
conclusions

 blog.DailyDoseofDS.com

 152

• Reduce clutter and enhance clarity
• Improve comparisons between groups
• Capture different aspects of the data through a single plot

You can use the PtitPrince library to create Raincloud plots in
Python: GitHub.

R users can use Raincloud Plots library: GitHub.

P.S. If the name “Raincloud plot” isn’t obvious yet, it comes from
the visual appearance of the plot:

The origin of the name “Raincloud plot”

! Over to you: What are some other hidden gems of data
visualization?

 blog.DailyDoseofDS.com

 153

7 Must-know Techniques For
Encoding Categorical Feature

Almost all real-world datasets come with multiple types of features.

These primarily include:

a. Categorical

b. Numerical

While numerical features can be directly used in most ML models
without any additional preprocessing, categorical features require
encoding to be represented as numerical values.

On a side note, do you know that not all ML models need categorical
feature encoding? Read one of my previous guides on this here: Is
Categorical Feature Encoding Always Necessary Before Training
ML Models?

If categorical features do need some additional processing, being aware
of the common techniques to encode them is crucial.

The above visual summarizes 7 most common methods for encoding
categorical features.

Read the full issue here: https://www.blog.dailydoseofds.com/p/7-
must-know-techniques-for-encoding

 blog.DailyDoseofDS.com

 154

Automated EDA Tools That Let You
Avoid Manual EDA Tasks

EDA is a vital step in all data science projects.

It is important because examining and understanding the data directly
aids the modeling stage.

 blog.DailyDoseofDS.com

 155

By uncovering hidden insights and patterns, one can make informed
decisions about subsequent steps in the project.

Despite its importance, it is often a time-consuming and tedious task.

The above visual summarizes 8 powerful EDA tools, that automate
many redundant steps of EDA and help you profile your data in quick
time.

Read the full issue here to learn more about each of these tools:
h4ps://www.blog.dailydoseofds.com/p/automated-eda-tools-that-let-you

 blog.DailyDoseofDS.com

 156

The Limitation Of Silhouette Score
Which Is Often Ignored By Many

Silhouette score is commonly used for evaluating clustering results.

At times, it is also preferred in place of the elbow curve to determine

the optimal number of clusters. (I have covered this before if
you wish to recap or learn more).

However, while using the Silhouette score, it is also important to be
aware of one of its major shortcomings.

The Silhouette score is typically higher for convex (or somewhat
spherical) clusters.

However, using it to evaluate arbitrary-shaped clustering can produce
misleading results.

This is also evident from the following image:

 blog.DailyDoseofDS.com

 157

While the clustering output of KMeans is worse, the Silhouette score is
still higher than Density-based clustering.

DBCV — density-based clustering validation is a better metric in such
cases.

As the name suggests, it is specifically meant to evaluate density-based
clustering.

Simply put, DBCV computes two values:

a. The density within a cluster

b. The density between clusters

A high density within a cluster and a low density between clusters
indicates good clustering results.

DBCV can also be used when you don’t have ground truth labels.

 blog.DailyDoseofDS.com

 158

This adds another metric to my recently proposed methods: Evaluate
Clustering Performance Without Ground Truth Labels.

The effectiveness of DBCV is also evident from the image below:

This time, the score for the clustering output of KMeans is worse, and
that of density-based clustering is higher.

Get started with DBCV here: GitHub.

! Over to you: What are some other ways to evaluate clustering
where traditional metrics may not work?

 blog.DailyDoseofDS.com

 159

9 Must-Know Methods To Test Data
Normality

The normal distribution is the most popular distribution in data
science.

Many ML models assume (or work better) under the presence of normal
distribution.

For instance:

1. linear regression assumes residuals are normally distributed

2. at times, transforming the data to normal distribution can be

beneficial (Read one of my previous posts on this here)

3. linear discriminant analysis (LDA) is derived under the
assumption of normal distribution

4. and many more.

Thus, being aware of the ways to test normality is extremely crucial
for data scientists.

The visual above depicts the 9 most common methods to test normality.

 blog.DailyDoseofDS.com

 160

#1) Plotting methods:
Histogram

QQ Plot:

1. It depicts the quantiles of the observed distribution (the given
data in this case) against the quantiles of a reference distribution
(the normal distribution in this case).

2. A good QQ plot will show minimal deviations from the reference
line, indicating that the data is approximately normally
distributed.

3. A bad QQ plot will exhibit significant deviations, indicating a
departure from normality.

KDE (Kernel Density Estimation) Plot:

 blog.DailyDoseofDS.com

 161

1. It provides a smoothed, continuous representation of the
underlying distribution of a dataset.

2. It represents the data using a continuous probability density
function.

Box plot

Violin plot:

1. A combination of a box plot and a KDE plot.

#2) Statistical methods:
While the plotting methods discussed above are often reliable, they
offer a subjective method to test normality.

In other words, the approach of visual interpretation is prone to human
errors.

Thus, it is important to be aware of quantitative measures as well.

Shapiro-Wilk test:

a. The most common method for testing normality.

b. It calculates a statistic based on the correlation between the data
and the expected values under a normal distribution.

c. This results in a p-value that indicates the likelihood of
observing such a correlation if the data were normally
distributed.

d. A high p-value indicates the presence of samples drawn from a
normal distribution.

e. Get started: Scipy Docs.

 blog.DailyDoseofDS.com

 162

Kolmogorov-Smirnov (KS) test:

a. The Kolmogorov-Smirnov test is typically used to determine if a
dataset follows a specific distribution—normal distribution in
normality testing.

b. The KS test compares the cumulative distribution function
(CDF) of the data to the cumulative distribution function (CDF)
of a normal distribution.

c. The output statistic is based on the maximum difference between
the two distributions.

d. A high p-value indicates the presence of samples drawn from a
normal distribution.

e. Get started: Scipy Docs.

Anderson-Darling test

a. Another method to determine if a dataset follows a specific
distribution—normal distribution in normality testing.

b. It provides critical values at different significance levels.

c. Comparing the obtained statistic to these critical values
determines whether we will reject or fail to reject the null
hypothesis of normality.

d. Get started: Scipy Docs.

Lilliefors test

a. It is a modification of the Kolmogorov-Smirnov test.

b. The KS test is appropriate in situations where the parameters of
the reference distribution are known.

c. However, if the parameters are unknown, Lilliefors is
recommended.

d. Get started: Statsmodel Docs.

If you are looking for an in-depth review and comparison of these

tests, I highly recommend reading this research paper: Power
comparisons of Shapiro-Wilk, Kolmogorov-Smirnov,
Lilliefors and Anderson-Darling tests.

" Over to you: What other common methods have I missed?

 blog.DailyDoseofDS.com

 163

A Visual Guide to Popular Cross
Validation Techniques

Tuning and validating machine learning models on a single validation
set can be misleading at times.

While traditional validation methods, such as a single train-test split,
are easy to implement, they, at times, can yield overly optimistic
results.

This can occur due to a lucky random split of data which results in a
model that performs exceptionally well on the validation set but poorly
on new, unseen data.

 blog.DailyDoseofDS.com

 164

That is why we often use cross-validation instead of simple single-set
validation.

Cross-validation involves repeatedly partitioning the available data
into subsets, training the model on a few subsets, and validating on the
remaining subsets.

The main advantage of cross-validation is that it provides a more
robust and unbiased estimate of model performance compared to the
traditional validation method.

The image above presents a visual summary of five of the most
commonly used cross-validation techniques.

Leave-One-Out Cross-Validation

1. Leave one data point for validation.

2. Train the model on the remaining data points.

3. Repeat for all points.

4. This is practically infeasible when you have tons of data points.
This is because number of models is equal to number of data
points.

5. We can extend this to Leave-p-Out Cross-Validation, where, in
each iteration, p observations are reserved for validation and the
rest are used for training.

 blog.DailyDoseofDS.com

 165

K-Fold Cross-Validation

1. Split data into k equally-sized subsets.

2. Select one subset for validation.

3. Train the model on the remaining subsets.

4. Repeat for all subsets.

Rolling Cross-Validation

1. Mostly used for data with temporal structure.

2. Data splitting respects the temporal order, using a fixed-size
training window.

3. The model is evaluated on the subsequent window.

 blog.DailyDoseofDS.com

 166

Blocked Cross-Validation

1. Another common technique for time-series data.

2. In contrast to rolling cross-validation, the slice of data is
intentionally kept short if the variance does not change
appreciably from one window to the next.

3. This also saves computation over rolling cross-validation.

Stratified Cross-Validation

1. The above techniques may not work for imbalanced datasets.
Thus, this technique is mostly used for preserving the class
distribution.

2. The partitioning ensures that the class distribution is preserved.

" Over to you: What other cross-validation techniques have I missed?

 blog.DailyDoseofDS.com

 167

Decision Trees ALWAYS Overfit.
Here's A Lesser-Known Technique To
Prevent It.
By default, a decision tree (in sklearn’s implementation, for instance),
is allowed to grow until all leaves are pure.

As the model correctly classifies ALL training instances, this leads to:

1. 100% overfitting, and

2. poor generalization

Cost-complexity-pruning (CCP) is an effective technique to prevent
this.

CCP considers a combination of two factors for pruning a decision
tree:

1. Cost (C): Number of misclassifications

2. Complexity (C): Number of nodes

The core idea is to iteratively drop sub-trees, which, after removal,
lead to:

1. a minimal increase in classification cost

2. a maximum reduction of complexity (or nodes)

In other words, if two sub-trees lead to a similar increase in
classification cost, then it is wise to remove the sub-tree with more
nodes.

 blog.DailyDoseofDS.com

 168

Cost-complexity pruning at the same increase in misclassification cost.

In sklearn, you can control cost-complexity-pruning using
the ccp_alpha parameter:

1. large value of ccp_alpha → results in underfitting

2. small value of ccp_alpha → results in overfitting

The objective is to determine the optimal value of ccp_alpha, which
gives a better model.

The effectiveness of cost-complexity-pruning is evident from the
image below:

" Over to you: What are some other ways you use to prevent decision
trees from overfitting?

 blog.DailyDoseofDS.com

 169

Evaluate Clustering Performance
Without Ground Truth Labels

In the absence of ground truth labels, evaluating clustering
performance is difficult.

Yet, there are a few performance metrics that can help.

Using them, you can compare multiple clustering results, say, those
obtained with a different number of centroids.

This is especially useful for high-dimensional datasets, as visual
evaluation is difficult.

 blog.DailyDoseofDS.com

 170

Silhoutte Coefficient:

1. for every point, find average distance to all other points within
its cluster (A)

2. for every point, find average distance to all points in the nearest
cluster (B)

3. score for a point is (B-A)/max(B, A)

4. compute the average of all individual scores to get the overall
clustering score

5. computed on all samples, thus, it's computationally expensive

6. a higher score indicates better and well-separated clusters.

I covered this here if you wish to understand Silhoutte Coefficient with

diagrams: The Limitations Of Elbow Curve And What
You Should Replace It With.

Calinski-Harabasz Index:

1. A: sum of squared distance between all centroids and overall
dataset center

 blog.DailyDoseofDS.com

 171

2. B: sum of squared distance between all points and their specific
centroid

3. metric is computed as A/B (with an additional scaling factor)

4. relatively faster to compute

5. it is sensitive to scale

6. a higher score indicates well-separated clusters

Davies-Bouldin Index:

measures the similarity between clusters

thus, a lower score indicates dissimilarity and better clustering

Luckily, they are neatly integrated with sklearn too.

Silhoutte Coefficient

Calinski-Harabasz Index

Davies-Bouldin Index

" Over to you: What are some other ways to evaluate clustering
performance in such situations?

 blog.DailyDoseofDS.com

 172

One-Minute Guide To Becoming a
Polars-savvy Data Scientist

Pandas is an essential library in almost all Data Science projects.

But it has many limitations.

For instance, Pandas:

always adheres to single-core computation

offers no lazy execution

creates bulky DataFrames

is slow on large datasets, and many more

Polars is a lightning-fast DataFrame library that addresses these
limitations.

It provides two APIs:

Eager: Executed instantly, like Pandas.

Lazy: Executed only when one needs the results.

 blog.DailyDoseofDS.com

 173

The visual presents the syntax comparison of Polars and Pandas for
various operations.

It is clear that Polars API is extremely similar to Pandas'.

Thus, contrary to common belief, the transition from Pandas to Polars
is not that intimidating and tedious.

If you know Pandas, you (mostly) know Polars.

In most cases, the transition will require minimal code updates.

But you get to experience immense speed-ups, which you don't get
with Pandas.

I recently did a comprehensive benchmarking of Pandas and Polars,

which you can read here: Pandas vs Polars — Run-time and
Memory Comparison.

" Over to you: What are some other faster alternatives to Pandas that
you are aware of?

 blog.DailyDoseofDS.com

 174

The Most Common Misconception
About Continuous Probability
Distributions

This issue has many mathematical formulations.

Pleaase read it here: https://www.blog.dailydoseofds.com/p/the-most-
common-misconception-about-470

 blog.DailyDoseofDS.com

 175

Don't Overuse Scatter, Line and Bar
Plots. Try These Four Elegant
Alternatives.
Scatter, bar, and line plots are the three most commonly used plots to
visualize data.

While these plots do cover a wide variety of visualization use cases,
many data scientists use them excessively in every possible place.

Here are some alternatives that can supercharge your visualizations.

Scatter plot alternatives
When you have thousands of data points, scatter plots can get too
dense to interpret.

 blog.DailyDoseofDS.com

 176

Instead, you can replace them with Hexbin or KDE plots.

Hexbin plots bin the area of a chart into hexagonal regions. Each
region is assigned a color intensity based on the method of aggregation
used (the number of points, for instance).

A KDE plot illustrates the distribution of a set of points in a two-
dimensional space.

A contour is created by connecting points of equal density. In other
words, a single contour line depicts an equal density of data points.

Bar plot alternative
When you have many categories to depict, the plot can easily get
cluttered and messy.

Instead, you can replace them with Dot plots. They are like scatter
plots but with one categorical and one continuous axis.

Line/Bar plot alternative
When visualizing the change in value over time, it is difficult to depict
incremental changes with a bar/line plot.

 blog.DailyDoseofDS.com

 177

Bar/Line plot alternative — Waterfall chart

Instead, try Waterfall charts. The changes are automatically color-
coded, making them easier to interpret.

" Over to you: What are some other elegant alternatives to commonly
used plots?

I have written a Medium article on this if you are interested in learning

more: Medium Blog.

 blog.DailyDoseofDS.com

 178

CNN Explainer: Interactively
Visualize a Convolutional Neural
Network

Convolutional Neural Networks (CNNs) have been a revolutionary
deep learning architecture in computer vision.

On a side note, we know that CNNs are mostly used for computer
vision tasks etc. But they are also used in NLP applications

too. Further reading.

The core component of a CNN is convolution, which allows them to
capture local patterns, such as edges and textures, and helps in
extracting relevant information from the input.

Yet, at times, understanding:

1. how CNNs internally work

2. how inputs are transformed

3. what is the representation of the image after each layer

4. how convolutions are applied

5. how pooling operation is applied

6. how the shape of the input changes, etc.

 blog.DailyDoseofDS.com

 179

…is indeed difficult.

If you have ever struggled to understand CNN, you should use CNN
Explainer.

It is an incredible interactive tool to visualize the internal workings of
a CNN.

Essentially, you can play around with different layers of a CNN and
visualize how a CNN applies different operations.

Try it here: CNN Explainer.

" Over to you: What are some interactive tools to visualize different
machine learning models/architectures, that you are aware of?

 blog.DailyDoseofDS.com

 180

Sankey Diagrams: An Underrated
Gem of Data Visualization

Many tabular data analysis tasks can be interpreted as a flow between
the source and a target.

Instead of manually analyzing tabular data, try to represent them as
Sankey diagrams.

They immensely simplify the data analysis process.

For instance, from the diagram above, one can quickly infer that:

1. Washington hosts flights from all origins

2. New York only receives passengers from London

3. Majority of flights in Los Angeles come from Dubai

4. All flights from New Delhi go to Washington

Now imagine doing that by just looking at the tabular data.

1) It will be time-consuming

2) You may miss out on a few insights

" Over to you: What are some other ways you use to simplify data
analysis?

 blog.DailyDoseofDS.com

 181

A Common Misconception About
Feature Scaling and Standardization

Feature scaling and standardization are common ways to alter a
feature’s range.

For instance:

It is desired because it prevents a specific feature from strongly
influencing the model’s output. What’s more, it ensures that the model
is more robust to variations in the data.

 blog.DailyDoseofDS.com

 182

In the image above, the scale of Income could massively impact the
overall prediction. Scaling (or standardizing) the data to a similar
range can mitigate this and improve the model’s performance.

Yet, contrary to common belief, they NEVER change the underlying
distribution.

Instead, they just alter the range of values.

Thus:

1. Normal distribution → stays Normal

2. Uniform distribution → stays Uniform

3. Skewed distribution → stays Skewed

4. and so on…

We can also verify this from the below illustration:

 blog.DailyDoseofDS.com

 183

If you intend to eliminate skewness, scaling/standardization won’t
help.

Try feature transformations instead.

I recently published a post on various transformations, which you can

read here: Feature transformations.

" Over to you: While feature scaling is immensely helpful, some ML
algorithms are unaffected by the scale. Can you name some
algorithms?

 blog.DailyDoseofDS.com

 184

7 Elegant Usages of Underscore in
Python

Underscore offers many functionalities in Python.

The above animation highlights 7 of the must-know usages among
Python programmers.

Read the full issue here: hBps://www.blog.dailydoseofds.com/p/7-elegant-

usages-of-underscore-in

 blog.DailyDoseofDS.com

 185

Random Forest May Not Need An
Explicit Validation Set For Evaluation

We all know that ML models should not be evaluated on the training
data. Thus, we should always keep a held-out validation/test set for
evaluation.

But random forests are an exception to that.

In other words, you can reliably evaluate a random forest using the
training set itself.

Confused?

Let me explain.

To recap, a random forest is trained as follows:

1. First, create different subsets of data with replacement.

2. Next, train one decision tree per subset.

3. Finally, aggregate all predictions to get the final prediction.

Clearly, EVERY decision tree has some unseen data
points in the entire training set.

 blog.DailyDoseofDS.com

 186

Thus, we can use them to validate that specific decision tree.

This is also called out-of-bag validation.

Calculating the out-of-bag score for the whole random forest is
simple too.

1. For every data point in the entire training set:

2. Gather predictions from all decision trees that used it as an out-
of-bag sample

 blog.DailyDoseofDS.com

 187

3. Aggregate predictions to get the final prediction

4. Finally, score all the predictions to get the out-of-bag score.

Out-of-bag validation has several benefits:

1. If you have less data, you can prevent data splitting

2. It's computationally faster than using, say, cross-validation

3. It ensures that there is no data leakage, etc.

Luckily, out-of-bag validation is neatly tied in sklearn’s random forest
implementation too.

Parameter for out-of-bag scoring as specified in the official docs

" Over to you:

1. What are some limitations of out-of-bag validation?

2. How reliable is the out-of-bag score to tune the hyperparameters
of the random forest model?

 blog.DailyDoseofDS.com

 188

Declutter Your Jupyter Notebook
Using Interactive Controls

While using Jupyter, one often finds themselves in situations where
they repeatedly modify a cell and re-rerun it.

This makes data exploration:

• irreproducible,

• tedious, and

• unorganized.

What’s more, the notebook also gets messy and cluttered.

Instead, leverage interactive controls using IPywidgets.

A single decorator (@interact) allows you to add:

• sliders

• dropdowns

• text fields, and more.

 blog.DailyDoseofDS.com

 189

As a result, you can:

• explore your data interactively

• speed-up data exploration

• avoid repetitive cell modifications and executions

• organize your data analysis.

" Over to you: What are some other ways to elegantly explore data in
Jupyter that you are aware of?

