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The Must-Know Categorisation of 
Discriminative Models 

In one of the earlier posts, we discussed Generative and 
Discriminative Models. 

Today’s post dives into a further categorization of discriminative 
models. 

Let’s understand. 

To recap: 

Discriminative models: 

 

 
 

• learn decision boundaries that separate different classes. 
• maximize the conditional probability: P(Y|X) — Given an 

input X, maximize the probability of label Y. 
• are meant explicitly for classification tasks. 
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Generative models: 

 
 

• maximize the joint probability: P(X, Y) 
• learn the class-conditional distribution P(X|Y) 
• are typically not meant for classification tasks, but they can 

perform classification nonetheless. 
 

In a gist, discriminative models directly learn the function f that 
maps an input vector (x) to a label (y). 
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They can be further divided into two categories: 
• Probabilistic models 
• Direct labeling models 

 

Probabilistic models 

 

 
As the name suggests, probabilistic models provide 
a probabilistic estimate for each class. 

They do this by learning the posterior class probabilities P(Y|X). 

As a result, their predictions depict the model’s confidence in 
predicting a specific class label. 

This makes them well-suited in situations when uncertainty is 
crucial to the problem at hand. 

Examples include: 

• Logistic regression 
• Neural networks 
• CRFs 

 

Labeling models 
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Labeling models 

In contrast to probabilistic models, labeling models (also called 
distribution-free classifiers) directly predict the class label — 
without providing any probabilistic estimate. 

As a result, their predictions DO NOT indicate a degree 
of confidence. 

This makes them unsuitable when uncertainty in a model’s 
prediction is crucial. 

Examples include: 

• Random forests 
• kNN 
• Decision trees 

That being said, it is important to note that these models, in some 
way, can be manipulated to output a probability. 

For instance, Sklearn’s decision tree classifier does provide 
a predict_proba() method, as shown below: 
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This may appear a bit counterintuitive at first. 

In this case, the model outputs the class probabilities by looking 
at the fraction of training class labels in a leaf node. 

 

 
 

In other words, say a test instance reaches a specific leaf node for 
final classification. The model will calculate the probabilities as 
the fraction of training class labels in that leaf node. 
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Yet, these manipulations do not account for the “true” uncertainty 
in a prediction. 

This is because the uncertainty is the same for all predictions that 
land in the same leaf node. 

Therefore, it is always wise to choose probabilistic classifiers 
when uncertainty is paramount. 

! Over to you: Can you add one more model for probabilistic 
and labeling models? 
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Where Did The Regularization Term 
Originate From? 

One of the major aspects of training any reliable ML model is 
avoiding overfitting. 

In a gist, overfitting occurs when a model learns to perform 
exceptionally well on the training data. 

This may happen because the model is trying too hard to capture 
all unrelated and random noise in our training dataset, as 
shown below: 

 

 
 

And one of the most common techniques to avoid overfitting 
is regularization. 

Simply put, the core objective of regularization is to penalize the 
model for its complexity. 

In fact, we can indeed validate the effectiveness of regularization 
experimentally, as shown below: 
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As we move to the right, the regularization parameter increases. 
As a result, the model creates a simpler decision boundary on all 
5 datasets. 

Now, if you have taken any ML course or read any tutorials about 
this, the most common they teach is to add a penalty (or 
regularization) term to the cost function, as shown below: 

 

 
 

But why? 
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In other words, have you ever wondered why we are taught to 
add a squared term to the loss function (when using L2 
regularization)? 

In my experience, most tutorials never bother to cover it, and 
readers are always expected to embrace these notions as a given. 

Yet, there are many questions to ask here: 

• Where did this regularization term originate from? How 
was it derived for the first time? 

• What does the regularization term precisely measure? 
• Why do we add this regularization term to the loss? 
• Why do we square the parameters (specific to L2 

regularization)? Why not any other power? 
• Is there any probabilistic evidence that justifies the 

effectiveness of regularization? 

Turns out, there is a concrete probabilistic justification for using 
regularization. 

And if you are curious, then this is precisely the topic of today’s 
machine learning deep dive: “The Probabilistic Origin of 
Regularization.” 

 

 
The Probabilistic Origin of Regularization 

While most of the community appreciates the importance of 
regularization, in my experience, very few learn about its origin 
and the mathematical formulation behind it. 
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It can’t just appear out of nowhere, can it? 

Thus, the objective of this deep dive is to help you build a solid 
intuitive, and logical understanding of regularisation — purely 
from a probabilistic perspective. 

 

 
Image taken from the The Probabilistic Origin of 
Regularization article 

! Interested folks can read it here: The Probabilistic Origin 
of Regularization. 
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How to Create The Elegant Moving 
Bubbles Chart in Python? 

I often come across the moving bubbles chart when I am scrolling 
LinkedIn. 

I am sure you would have seen them too. 

It is elegant animation that depicts the movements of entities 
across time. They are particularly useful for determining when 
clusters appear in the data and at what state(s). 

I always wondered how one can create them in Python. 

Turns out, there’s a pretty simple way to do it just three lines of 
Python using D3Blocks. 

The library utilizes the graphics of the popular d3js Javascript 
library to create visually appealing charts with only a few lines 
of Python code. 

To create a moving bubbles chart, you can use 
the d3.movingbubbles() method. 

The input should be a Pandas DataFrame. Each row should 
represent the state of a sample at a particular timestamp, as 
depicted below: 
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After aligning the DataFrame in the desired format, you can 
create the moving bubbles chart as follows: 
 

 
 

This will create an HTML file. You can preview it in a browser 
or open it in Jupyter directly using the IPython library. 

Isn’t that cool? 
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Gradient Checkpointing: Save 50-
60% Memory When Training a 
Neural Network 

Neural networks primarily use memory in two ways: 

• Storing model weights 
• During training: 

o Forward pass to compute and store activations of all 
layers 

o Backward pass to compute gradients at each layer 

This restricts us from training larger models and also limits the 
max batch size that can potentially fit into memory. 

Gradient checkpointing is an incredible technique to reduce the 
memory overheads of neural nets. 

Here, we run the forward pass normally and the core idea is to 
optimize the backpropagation step. 

Let’s understand how it works. 

We know that in a neural network: 

• The activations of a specific layer can be solely computed 
using the activations of the previous layer. 

 

 



                                                                blog.DailyDoseofDS.com 
 

 25 

• Updating the weights of a layer only depends on two 
things: 
 

 

 

o The activations of that layer. 
o The gradients computed in the next (right) layer. 

Gradient checkpointing exploits these ideas to optimize 
backpropagation: 

• Divide the network into segments before backpropagation 
• In each segment: 

o Only store the activations of the first layer. 
o Discard the rest of the activations. 

• When updating the weights of layers in a segment, 
recompute its activations using the first layer in that 
segment. 

This is depicted in the image below: 
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As shown above: 

• First, we divide the network into 2 segments. 
• Next, we only keep the activations of the first layer in each 

segment in memory. 
• We discard the activations of other layers in the segment. 
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• When updating the weights of red layers, we recompute 
their activations using the activations of the cyan layer. 

 

 
 

Recomputing the activations only when they are needed 
tremendously reduces the memory requirement. 

Essentially, we don’t need to store all the intermediate activations 
in memory. 

This allows us to train the network on larger batches of data. 

Typically, gradient checkpointing can reduce memory usage 
by 50-60%, which is massive. 

Of course, this does come at a cost of slightly increased run-time. 
This can typically range between 15-25%. 

It is because we compute some activations twice. 

So there's always a tradeoff between memory and run-time. 

Yet, gradient checkpointing is an extremely powerful technique 
to train larger models without resorting to more intensive 
techniques like distributed training, for instance. 

Thankfully, gradient checkpointing is also implemented by many 
open-source deep learning frameworks like Pytorch, etc. 

! Over to you: What are some ways you use to optimize a neural 
network’s training?  
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Gaussian Mixture Models: The 
Flexible Twin of KMeans 

KMeans is widely used for its simplicity and effectiveness as a 
clustering algorithm. 

But it has many limitations. 

To begin: 

• It does not account for cluster variance 
• It can only produce spherical clusters. As shown below, 

even if the data has non-circular clusters, it still produces 
round clusters. 
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• It performs a hard assignment. There are no probabilistic 

estimates of each data point belonging to each cluster. 
 

 
 

These limitations often make KMeans a non-ideal choice for 
clustering. 

Gaussian Mixture Models are often a superior algorithm in this 
respect. 

As the name suggests, they can cluster a dataset that has a 
mixture of many Gaussian distributions. 

They can be thought of as a more flexible twin of KMeans. 

The primary difference is that: 

• KMeans learns centroids. 
• Gaussian mixture models learn a distribution. 

For instance, in 2 dimensions: 
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• KMeans can only create circular clusters 
• GMM can create oval-shaped clusters. 

The effectiveness of GMMs over KMeans is evident from the 
image below. 

 

 
 

• KMeans just relies on distance and ignores the distribution 
of each cluster 

• GMM learns the distribution and produces better clustering. 

But how does it exactly work, and why is it so effective? 
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What is the core intuition behind GMMs? 

How do they model the data distribution so precisely? 

If you are curious, then this is precisely what we are learning 
in today’s extensive machine learning deep dive. 

 

 
Gaussian Mixture Models Article 

The entire idea and formulation of Gaussian mixture models 
appeared extremely compelling and intriguing to me when I first 
learned about them. 

The notion that a single model can learn diverse data distributions 
is truly captivating. 

Learning about them has been extremely helpful to me in 
building more flexible and reliable clustering algorithms. 

Thus, understanding how they work end-to-end will be 
immensely valuable if you are looking to expand your expertise 
beyond traditional algorithms like KMeans, DBSCAN, etc. 

Thus, today’s article covers: 

• The shortcomings of KMeans. 
• What is the motivation behind GMMs? 
• How do GMMs work? 
• The intuition behind GMMs. 
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• Plotting dummy multivariate Gaussian distributions to 
better understand GMMs. 

• The end-to-end mathematical formulation of GMMs. 
• How to use Expectation-Maximization to model data using 

GMMs? 
• Coding a GMM from scratch (without sklearn). 
• Comparing results of GMMs with KMeans. 
• How to determine the optimal number of clusters for 

GMMs? 
• Some practical use cases of GMMs. 
• Takeaways. 

! Interested folks can read it here: Gaussian Mixture 
Models (GMM).  
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Why Correlation (and Other 
Summary Statistics) Can Be 
Misleading 

 

Many data scientists solely rely on the correlation matrix to study 
the association between variables. 

But unknown to them, the obtained statistic can be heavily driven 
by outliers. 

This is evident from the image above. 

The addition of just two outliers drastically changed: 

• the correlation 
• the regression fit 

Thus, plotting the data is highly important. 
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This can save you from drawing wrong conclusions, which you 
may have drawn otherwise by solely looking at the summary 
statistics. 

One thing that I often do when using a correlation matrix is 
creating a PairPlot as well (shown below). 

 

 
 

This lets me infer if the scatter plot of two variables and their 
corresponding correlation measure resonate with each other or 
not. 

! Over to you: What are some other measures you take when 
using summary statistics?  
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MissForest: A Better Alternative To 
Zero (or Mean) Imputation 

Replacing (imputing) missing values with mean or zero or any 
other fixed value: 

• alters summary statistics 
• changes the distribution 
• inflates the presence of a specific value 

This can lead to: 

• inaccurate modeling 
• incorrect conclusions, and more. 

Instead, always try to impute missing values with more precision. 

In one of the earlier posts, we discussed kNN imputer. Today’s 
post builds on that by addressing its limitations, which are: 

1. High run-time for imputation — especially for high-
dimensional datasets. 

2. Issues with distance calculation in case of categorical non-
missing features. 

3. Requires feature scaling, etc. 

MissForest imputer is another reliable choice for missing value 
imputation. 

As the name suggests, it imputes missing values using the 
Random Forest algorithm. 

The following figure depicts how it works: 
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Visual illustration of MissForest imputer 

• Step 1: To begin, impute the missing feature with a random 
guess — Mean, Median, etc. 

• Step 2: Model the missing feature using Random Forest. 
• Step 3: Impute ONLY originally missing values using 

Random Forest’s prediction. 
• Step 4: Back to Step 2. Use the imputed dataset from Step 

3 to train the next Random Forest model. 
• Step 5: Repeat until convergence (or max iterations). 

In case of multiple missing features, the idea (somewhat) stays 
the same: 
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• Impute features sequentially in increasing order 
missingness — features with fewer missing values are 
imputed first. 

Its effectiveness over Mean/Zero imputation is evident from the 
image below. 
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• Mean/Zero alters the summary statistics and distribution. 
• MissForest imputer preserves them. 

What’s more, MissForest can impute even if the data has 
categorical non-missing features. 

MissForest is based on Random Forest, so one can impute from 
categorical and continuous data. 

Get started with MissForest imputer: MissingPy MissForest.  
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A Visual and Intuitive Guide to The 
Bias-Variance Problem 

 

The concepts of overfitting and underfitting are pretty well 
understood by most folks. 

Yet, here’s another neat way to understand them intuitively. 

Imagine you want to estimate a probability density function 
(PDF) using a histogram. 

Your estimation entirely depends on the bin width: 

• Creating small bins will overfit the PDF. This leads to high 
variance. 

• Creating large bins will underfit the PDF. This leads to high 
bias. 

This is depicted in the image above. 
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Overall, the whole bias-variance problem is about finding the 
optimal bin width. 

I first read this analogy in the book “All of Statistics” a couple of 
years back and found it to be pretty intuitive and neat. 

Here’s the book if anyone’s interested in learning more: All of 
Statistics PDF. Page 306 inspired today’s post. 

Hope that helped :)  
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The Most Under-appreciated 
Technique To Speed-up Python 

Python’s default interpreter — CPython, isn’t smart. 

It serves as a standard interpreter for Python and offers no 
built-in optimization. 

Instead, use the Cython module. 

CPython and Cython are different. Don’t get confused 
between the two. 

Cython converts your Python code into C, which is fast and 
efficient. 

Steps to use the Cython module: 

• Load the Cython module (in a separate cell of the 
notebook): %load_ext Cython. 

• Add the Cython magic command at the top of the 
cell: %%cython -a. 

• When using functions, specify their parameter data 
type. 

def func(int number): 
    ... 

• Define every variable using the “cdef” keyword and 
specify its data type. 

cdef int a = 10 

Once done, Cython will convert your Python code to C, as 
depicted below: 
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Cython converts Python code to C 

This will run at native machine code speed. Just invoke the 
method: 
>>> foo_c(2) 

The speedup is evident from the image below: 
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• Python code is slow. 
• But Cython provides a 100x speedup. 

Why does this work? 

Essentially, Python is dynamic in nature. 

For instance, you can define a variable of a specific type. 
But later, you can change it to some other type. 
a = 10 
a = "hello" # Perfectly legal in Python 

These dynamic manipulations come at the cost of run time. 
They also introduce memory overheads. 

However, Cython lets you restrict Python’s dynamicity. 

We avoid the above overheads by explicitly specifying the 
variable data type. 
cdef int a = 10 
 
a = "hello" ## Raises error 

The above declaration restricts the variable to a specific 
data type. This means the program would never have to 
worry about dynamic allocations. 

This speeds up run-time and reduces memory overheads. 

Isn’t that cool? 
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The Overlooked Limitations of Grid 
Search and Random Search 

Hyperparameter tuning is a tedious task in training ML models. 

Typically, we use two common approaches for this: 

• Grid search 
• Random search 

 

 
But they have many limitations. 

For instance: 

• Grid search performs an exhaustive search over all 
combinations. This is computationally expensive. 

• Grid search and random search are restricted to the 
specified hyperparameter range. Yet, the ideal 
hyperparameter may exist outside that range. 
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They can ONLY perform discrete searches, even if the 
hyperparameter is continuous. 
 

 
Grid search and random search can only try discrete values for 
continuous hyperparameters 

To this end, Bayesian Optimization is a highly underappreciated 
yet immensely powerful approach for tuning hyperparameters. 

It uses Bayesian statistics to estimate the distribution of the best 
hyperparameters. 

This allows it to take informed steps to select the next set of 
hyperparameters. As a result, it gradually converges to an optimal 
set of hyperparameters much faster. 

The efficacy is evident from the image below. 
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Bayesian optimization leads the model to the same F1 score but: 

• it takes 7x fewer iterations 
• it executes 5x faster 
• it reaches the optimal configuration earlier 

But how does it exactly work, and why is it so effective? 

What is the core intuition behind Bayesian optimization? 

How does it optimally reduce the search space of the 
hyperparameters? 

If you are curious, then this is precisely what we are learning 
in today’s extensive machine learning deep dive. 

 

 
Bayesian Optimization Article 
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The idea behind Bayesian optimization appeared to be extremely 
compelling to me when I first learned it a few years back. 

Learning about this optimized hyperparameter tuning and 
utilizing them has been extremely helpful to me in building large 
ML models quickly. 

Thus, learning about Bayesian optimization will be immensely 
valuable if you envision doing the same. 

Thus, today’s article covers: 

• Issues with traditional hyperparameter tuning approaches. 
• What is the motivation for Bayesian optimization? 
• How does Bayesian optimization work? 
• The intuition behind Bayesian optimization. 
• Results from the research paper that proposed Bayesian 

optimization for hyperparameter tuning. 
• A hands-on Bayesian optimization experiment. 
• Comparing Bayesian optimization with grid search and 

random search. 
• Analyzing the results of Bayesian optimization. 
• Best practices for using Bayesian optimization. 

! Interested folks can read it here: Bayesian Optimization 
for Hyperparameter Tuning. 

Hope you will learn something new today :) 
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An Intuitive Guide to Generative and 
Discriminative Models in Machine 
Learning 

 

Many machine learning models can be classified into two 
categories: 

• Generative 
• Discriminative 

This is depicted in the image above. 

Today, let’s understand what they are. 

Discriminative models 
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Discriminative models: 

• learn decision boundaries that separate different classes. 
• maximize the conditional probability: P(Y|X) — Given an 

input X, maximize the probability of label Y. 
• are meant explicitly for classification tasks. 

Examples include: 

• Logistic regression 
• Random Forest 
• Neural Networks 
• Decision Trees, etc. 

 

Generative models 
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Generative models: 

• maximize the joint probability: P(X, Y) 
• learn the class-conditional distribution P(X|Y) 
• are typically not meant for classification tasks. 

Examples include: 

• Naive Bayes 
• Linear Discriminant Analysis (LDA) 
• Gaussian Mixture Models, etc. 

We covered Joint and Conditional probability before. Read this 
post if you wish to learn what they are: A Visual Guide to Joint, 
Marginal and Conditional Probabilities. 

 

As generative models learn the underlying distribution, they can 
generate new samples. 
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However, this is not possible with discriminative models. 

Furthermore, generative models possess discriminative 
properties, i.e., they can be used for classification tasks (if 
needed). 
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However, discriminative models do not possess generative 
properties. 

 

Let’s consider an example. 

Imagine yourself as a language classification system. 

 

 
 

There are two ways you can classify languages. 

1. Learn every language and then classify a new language 
based on acquired knowledge. 

2. Understand some distinctive patterns in each language 
without truly learning the language. Once done, classify a 
new language. 

Can you figure out which of the above is generative and which 
one is discriminative? 

 

The first approach is generative. This is because you have 
learned the underlying distribution of each language. 

In other words, you learned the joint distribution P(Words, Language). 
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Moreover, as you understand the underlying distribution, now 
you can generate new sentences, can’t you? 

The second approach is a discriminative approach. This is 
because you only learned specific distinctive patterns of each 
language. 

It is like: 

• If so and so words appear, it is likely “Langauge A.” 
• If this specific set of words appear, it is likely “Langauge 

B.” 
• and so on. 

 

 
 

In other words, you learned the conditional 
distribution P(Language|Words). 

Here, can you generate new sentences now? No, right? 
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This is the difference between generative and discriminative 
models. 

Also, the above description might persuade you that generative 
models are more generally useful, but it is not true. 

This is because generative models have their own modeling 
complications. 

For instance, typically, generative models require more data than 
discriminative models. 

Relate it to the language classification example again. 

Imagine the amount of data you would need to learn all languages 
(generative approach) vs. the amount of data you would need to 
understand some distinctive patterns (discriminative approach). 

Typically, discriminative models outperform generative models 
in classification tasks. 
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Feature Scaling is NOT Always 
Necessary 

Feature scaling is commonly used to improve the performance 
and stability of ML models. 

This is because it scales the data to a standard range. This 
prevents a specific feature from having a strong influence on the 
model’s output. 

 

 
Different scales of columns 

For instance, in the image above, the scale of Income could 
massively impact the overall prediction. Scaling both features to 
the same range can mitigate this and improve the model’s 
performance. 

But is it always necessary? 

While feature scaling is often crucial, knowing when to do it is 
also equally important. 

Note that many ML algorithms are unaffected by scale. This is 
evident from the image below. 
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As shown above: 

• Logistic regression, SVM Classifier, MLP, and kNN do 
better with feature scaling. 

• Decision trees, Random forests, Naive bayes, and Gradient 
boosting are unaffected. 

Consider a decision tree, for instance. It splits the data based on 
thresholds determined solely by the feature values, regardless of 
their scale. 
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Decision tree 

Thus, it’s important to understand the nature of your data and the 
algorithm you intend to use. 

You may never need feature scaling if the algorithm is insensitive 
to the scale of the data. 

! Over to you: What other algorithms typically work well 
without scaling data? Let me know :) 
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Why Sigmoid in Logistic Regression? 
 

 

 

Logistic regression returns the probability of a binary outcome (0 
or 1). 

We all know logistic regression does this using the sigmoid 
function. 

 

 
 

But why? 
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In other words, have you ever wondered why we use Sigmoid in 
logistic regression? 

The most common reason we get to hear is that Sigmoid maps all 
real values to the range [0,1]. 

 

 
Sigmoid maps all real values to the range [0,1] 

But there are infinitely many functions that can do that. 

What is so special about Sigmoid? 

What’s more, how can we be sure that the output of Sigmoid is 
indeed a probability? 

See, as discussed above, logistic regression output is interpreted 
as a probability. 
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But this raises an essential question: “Can we confidently treat 
the output of sigmoid as a genuine probability?” 

It is important to consider that not every numerical value lying 
within the interval of [0,1] guarantees that it is a legitimate 
probability. 

In other words, just outputting a number between [0,1] isn’t 
sufficient for us to start interpreting it as a probability. 

Instead, the interpretation must stem from the formulation of 
logistic regression and its assumptions. 

So where did the Sigmoid come from? 

If you have never understood this, then… 

This is precisely what we are discussing in this today’s article, 
which is available for free for everyone. 

 

 

Taken from the Sigmoid Article 
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We are covering: 

• The common misinterpretations that explain the origin 
of Sigmoid. 

• Why are these interpretations wrong? 
• What an ideal output of logistic regression should look 

like. 
• How to formulate the origin of Sigmoid using a 

generative approach under certain assumptions. 
• What if the assumptions don’t hold true. 
• How the generative approach can be translated into 

the discriminative approach? 
• Best practices while using generative and 

discriminative approaches. 

Hope you will get to learn something new :) 

The article is available for free to everyone. 

! Interested folks can read it here: Why Do We Use 
Sigmoid in Logistic Regression? 
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Build Elegant Data Apps With The 
Coolest Mito-Streamlit Integration 

Personally, I am a big fan of no-code data analysis tools. 
They are extremely useful in eliminating repetitive code 
across projects—thereby boosting productivity. 

Yet, most no-code tools are often limited in terms of the 
functionality they support. Thus, flexibility is usually a big 
challenge while using them. 

Mito is an incredible open-source tool that lets you analyze 
data in a spreadsheet interface. 

With its latest update, Mito spreadsheets are now 
compatible with Streamlit-based data apps. 

As a result, you can now integrate a Mito sheet directly into 
a Streamlit data app. 

A demo is shown below: 

 

 

 



                                                                blog.DailyDoseofDS.com 
 

 63 

This is incredibly useful for: 

• Creating and sharing interactive data applications 
• Allowing non-technical users to explore data 
• Automating data manipulation 
• Providing instructions for other users as they explore 

our data 
• Presenting visualizations and insights in a data app 

on the fly, and more. 

What’s more, Mito recently supercharged its spreadsheet 
interface with AI. As a result, one can analyze data directly 
with text prompts. 

Isn’t that cool? 

I’m always curious to read your comments. What do you 
think about this cool feature addition to Mito? Let me know 
:) 

! Get started with Mito-Streamlit integration 
here: Mito-Streamlit. 
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A Simple and Intuitive Guide to 
Understanding Precision and Recall 

I have seen many folks struggling to intuitively understand 
Precision and Recall. 

These fairly straightforward metrics often intimidate many. 

Yet, adopting the Mindset Technique can be incredibly helpful. 

Let me walk you through it today. 

For simplicity, we’ll call the "Positive class" as our class of 
interest. 

Precision 

Formally, Precision answers the following question: 

“What proportion of positive predictions were actually 
positive?” 

Let’s understand that from a mindset perspective. 

When you are in a Precision Mindset, you don’t care about 
getting every positive sample correctly classified. 

But it’s important that every positive prediction you get should 
actually be positive. 

The illustration below is an example of high Precision. All 
positive predictions are indeed positive, even though some 
positives have been left out. 

 



                                                                blog.DailyDoseofDS.com 
 

 65 

 
Precision Mindset: All Positive predictions are actually positive, 
even though some have been left out 

For instance, consider a book recommendation system. Say a 
positive prediction means you’d like the recommended book. 

In a Precision Mindset, you are okay if the model does not 
recommend all good books in the world. 

 

 
Precision Mindset: It’s okay to miss out on some good books but 
recommend only good books 

But what it recommends should be good. 

So even if this system recommended only one book and you liked 
it, this gives a Precision of 100%. 
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This is because what it classified as “Positive” was indeed 
“Positive.” 

To summarize, in a high Precision Mindset, all positive 
predictions should actually be positive. 

Recall 

Recall is a bit different. It answers the following question: 

“What proportion of actual positives was identified correctly 
by the model?” 

When you are in a Recall Mindset, you care about getting each 
and every positive sample correctly classified. 

It’s okay if some positive predictions were not actually positive. 

But all positive samples should get classified as positive. 

The illustration below is an example of high recall. All positive 
samples were classified correctly as positive, even though some 
were actually negative. 

 

 
Recall Mindset: All positive samples are correctly classified 

For instance, consider an interview shortlisting system based on 
their resume. A positive prediction means that the candidate 
should be invited for an interview. 
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In a Recall Mindset, you are okay if the model selects some 
incompetent candidates. 

 

 
Recall Mindset: Just focus on correctly classifying all positive 
samples 

But it should not miss out on inviting any skilled candidate. 

So even if this system says that all candidates (good or bad) are 
fit for an interview, it gives you a Recall of 100%. 

This is because it didn’t miss out on any of the positive samples. 

 

Which metric to choose entirely depends on what’s important to 
the problem at hand: 

Optimize Precision if: 

1. You care about getting ONLY quality (or positive) 
predictions. 

2. You are okay if some quality (or positive) samples are left 
out. 

Optimize Recall if: 
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1. You care about getting ALL quality (or positive) samples 
correct. 

2. You are okay if some non-quality (or negative) samples 
also come along. 

I hope that was helpful :) 

! Over to you: What analogy did you first use to understand 
Precision and Recall?  
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Skimpy: A Richer Alternative to 
Pandas' Describe Method 

 

Pandas' describe method is pretty naive. 

It hardly highlights any key information about the data. 

Instead, try Skimpy. 

It is a Jupyter-based tool that provides a standardized and 
comprehensive data summary. 

By invoking a single function, you can generate the above report 
in seconds. 

This includes: 

• data shape 
• column data types 
• column summary statistics 
• distribution chart, 
• missing stats, etc. 

What's more, the summary is grouped by datatypes for faster 
analysis. 

Get started with Skimpy here: Skimpy. 
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A Common Misconception About 
Model Reproducibility 
 

Today I want to discuss something extremely important about 
ML model reproducibility. 

Imagine you trained an ML model, say a neural network. 

It gave a training accuracy of 95% and a test accuracy of 92%. 

You trained the model again and got the same performance. 

Will you call this a reproducible experiment? 

Think for a second before you read further. 

 

Well, contrary to common belief, this is not what reproducibility 
means. 

To understand better, consider this illustration: 
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Here, we feed the input data to neural networks with the same 
architecture but different randomizations. Next, we visualize the 
transformation using a 2D dummy layer, as I depicted in one of 
my previous posts below: 

 

 
Data transformation in a neural network (Post Link) 

All models separate the data pretty well and give 100% accuracy, 
don’t they? 

Yet, if you notice closely, each model generates varying data 
transformations (or decision boundaries). 

Now will you call this reproducible? 

No, right? 

It is important to remember that reproducibility is NEVER 
measured in terms of performance metrics. 

Instead, reproducibility is ensured when all sources of 
randomization are reproducible. 
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It is because two models with the same architecture yet different 
randomization, can still perform equally well. 

 

 
Different randomization may still lead to the same accuracy 

But that does not make your experiment reproducible. 

Instead, it is achieved when all sources of randomization are 
reproducible. 

And that is why it is also recommended to set seeds for random 
generators 

Once we do that, reproducibility will automatically follow. 

But do you know that besides building a reproducible pipeline, 
there’s another important yet overlooked aspect, especially in 
data science projects? 

It’s testing the pipeline. 

One of the biggest hurdles data science teams face is transitioning 
their data-driven pipeline from Jupyter Notebooks to an 
executable, reproducible, error-free, and organized pipeline. 
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Jupyter to data science pipeline 

And this is not something data scientists are particularly fond of 
doing. 

Yet, this is an immensely critical skill that many overlook. 

To help you develop that critical skill, this is precisely what we 
are discussing in today’s member-only blog. 

 

 
Blog on testing a data science pipeline using Pytest. 

Testing is already a job that data scientists don’t look forward to 
with much interest. 

Considering this, Pytest makes it extremely easy to write test 
suites, which in turn, immensely helps in developing reliable data 
science projects. 

You will learn the following: 

• Why are automation frameworks important? 
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• What is Pytest? 
• How it simplifies pipeline testing? 
• How to write and execute tests with Pytest? 
• How to customize Pytest’s test search? 
• How to create an organized testing suite using Pytest 

markers? 
• How to use fixtures to make your testing suite concise and 

reliable? 
• and more. 

All in all, building test suites is one of the best skills you can 
develop to build large and reliable data science pipelines. 

! Interested folks can read it here: Develop an Elegant Testing 
Framework For Python Using Pytest.  
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The Biggest Limitation Of Pearson 
Correlation Which Many Overlook 

Pearson correlation is commonly used to determine the 
association between two continuous variables. 

Many frameworks (in Pandas, for instance) have it as their 
default correlation metric. 

Yet, unknown to many, Pearson correlation: 

• only measures the linear relationship. 
• penalizes a non-linear yet monotonic association. 

 

 
Pearson correlation only measures the linear relationship 

Instead, Spearman correlation is a better alternative. 

It assesses monotonicity, which can be linear as well as non-
linear. 

 

 
Monotonicity in data 
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This is evident from the illustration below: 

 

 
Pearson vs. Spearman on linear and non-linear data 

• Pearson and Spearman correlation is the same on linear 
data. 

• But Pearson correlation underestimates a non-linear 
association. 

Spearman correlation is also useful when data is ranked or 
ordinal. 

! Over to you: What are some other alternatives that address 
Pearson's limitations?  
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Gigasheet: Effortlessly Analyse Upto 1 
Billion Rows Without Any Code 
Traditional Python-based tools become increasingly ineffective 
and impractical as you move towards scale. 
 

 
Python-based solutions on small datasets vs. large datasets 

Such cases demand: 

• appropriate infrastructure for data storage and 
manipulation. 

• specialized expertise in data engineering, and more. 

…which is not feasible at times. 

Gigasheet is a no-code tool that seamlessly addresses these pain 
points. 

Think of it like a combination of Excel and Pandas with no scale 
limitations. 
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As shown below, I used Gigasheet to load a CSV file with 1 
Billion rows and 47 GB in size, which is massive. 

 

 
Loading 1B rows with Gigasheet. 

You can perform any data analysis/engineering tasks by simply 
interacting with a UI. 

Thus, you can do all of the following without worrying about any 
infra issues: 

• Explore any large dataset — even as big as 1 Billion 
rows without code. 
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• Perform almost all tabular operations you would typically 
do, such as: 
 

 

Execute tabular data operations 

o merge, 
o plot, 
o group, 
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o sort, 
o summary stats, etc. 

• Import data from any source like AWS S3, Drive, 
databases, etc., and analyze it, and more. 

What’s more, using Gigasheet’s Sheet Assistant, you can also 
interact with your data by providing text instructions. 

Lastly, Gigasheet also provides an API. This allows you to: 

• automate any repetitive tasks 
• schedule imports and exports, and much more. 

To summarize, Gigasheet immensely simplifies tabular data 
exploration tasks. 

Anyone with or without data engineering skills can use Gigasheet 
for tabular tasks, directly from a UI. 

Isn’t that cool? 

! Get started with Gigasheet here: Gigasheet. 
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Why Mean Squared Error (MSE)? 
 

 
 

Say you wish to train a linear regression model. We know that we 
train it by minimizing the squared error: 

 

 
 

But have you ever wondered why we specifically use the 
squared error? 

See, many functions can potentially minimize the difference 
between observed and predicted values. But of all the possible 
choices, what is so special about the squared error? 

In my experience, people often say: 

• Squared error is differentiable. That is why we use it as a 
loss function. WRONG. 

• It is better than using absolute error as squared error 
penalizes large errors more. WRONG. 



                                                                blog.DailyDoseofDS.com 
 

 83 

Sadly, each of these explanations are incorrect. 

But approaching it from a probabilistic perspective helps us truly 
understand why the squared error is the most ideal choice. 

Let’s begin. 

In linear regression, we predict our target variable y using the 
inputs X as follows: 

 

 
 

Here, epsilon is an error term that captures the random noise for a 
specific data point (i). 

We assume the noise is drawn from a Gaussian distribution with 
zero mean based on the central limit theorem: 

 

 
 

Thus, the probability of observing the error term can be written 
as: 
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Substituting the error term from the linear regression equation, 
we get: 

 

 
This is called the distribution of y given x; when parametrized by 
θ 

For a specific set of parameters θ, the above tells us the 
probability of observing a data point (i). 

Next, we can define the likelihood function as follows: 

 

 
 

The likelihood is a function of θ. It means that by varying θ, we 
can fit a distribution to the observed data and quantify the 
likelihood of observing it. 

We further write it as a product for individual data points because 
we assume all observations are independent. 
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The likelihood of observing all observations is the same as the 
product of observing individual observations 

Thus, we get: 

 

 
Likelihood function 

Since the log function is monotonic, we use the log-likelihood 
and maximize it. This is called maximum likelihood estimation 
(MLE). 

 

 
Taking the log on both sides in the likelihood function 

Simplifying, we get: 
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To reiterate, the objective is to find the θ that maximizes the 
above expression. 

But the first term is independent of θ. Thus, maximizing the 
above expression is equivalent to minimizing the second term. 

And if you notice closely, it’s precisely the squared error. 

 

 
 

Thus, you can maximize the log-likelihood by minimizing the 
squared error. 

And this is the origin of least-squares in linear regression. 
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See, there’s clear proof and reasoning behind for using squared 
error as a loss function in linear regression. 

Nothing comes from thin air in machine learning :) 

But did you notice that in this derivation, we made a lot of 
assumptions? 

Firstly, we assumed the noise was drawn from a Gaussian 
distribution. But why? 

 

 
 

We assumed independence of observations. Why and what if it 
does not hold true? 

Next, we assumed that each error term is drawn from a 
distribution with the same variance σ. But what if it looks like 
this: 

 

 
Each error term is drawn from a distribution with a different 
variance 

In that case, the squared error will come out to be: 
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How to handle this? 

This is precisely what I have discussed in today’s member-only 
blog. 

In other words, have you ever wondered about the origin of linear 
regression assumptions? The assumptions just can’t appear from 
thin air, can they? 

Thus today’s deep dive walks you through the origin of each of 
the assumptions of linear regression in a lot of detail. 

 

 
Blog on the origin of assumptions of linear regression 

It covers the following: 

• An overview of linear regression and why we use Mean 
Squared Error in linear regression. 

• What is the assumed data generation process of linear 
regression? 

• What are the critical assumptions of linear regression? 
• Why error term is assumed to follow a normal distribution? 
• Why are these assumptions essential? 
• How are these assumptions derived? 
• How to validate them? 
• What measures can we take if the assumptions are violated? 
• Best practices. 
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All in all, a literal deep-dive on linear regression. The more you 
will learn, the more you will appreciate the beauty of linear 
regression :) 

! Interested folks can read it here: Where Did The 
Assumptions of Linear Regression Originate From?  
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A More Robust and Underrated 
Alternative To Random Forests 

We know that Decision Trees always overfit. 

This is because by default, a decision tree (in sklearn’s 
implementation, for instance), is allowed to grow until all leaves 
are pure. 

As the model correctly classifies ALL training instances, this 
leads to: 

• 100% overfitting, and 
• poor generalization 

Random Forest address this by introducing randomness in two 
ways: 

• While creating a bootstrapped dataset. 
• While deciding a node’s split criteria by choosing candidate 

features randomly. 

Yet, the chances of overfitting are still high. 

The Extra Trees algorithm is an even more robust alternative to 
Random Forest. 

! Note: 

• Extra Trees does not mean more trees. 
• Instead, it should be written as ExtRa, which 

means Extra Randomized. 

ExtRa Trees are Random Forests with an additional source of 
randomness. 

Here’s how it works: 
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• Create a bootstrapped dataset for each tree (same as RF) 
• Select candidate features randomly for node splitting (same 

as RF) 
• Now, Random Forest calculates the best split threshold for 

each candidate feature. 
• But ExtRa Trees chooses this split threshold randomly. 

 

 
 
Random Forest vs. ExtRa Trees 

• This is the source of extra randomness. 
• After that, the best candidate feature is selected. 

This further reduces the variance of the model. 

The effectiveness is evident from the image below: 
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Decision Tree vs. Random Forest vs. ExtRa Trees 
• Decision Trees entirely overfit 
• Random Forests work better 
• Extra Trees performs even better 

⚠ A cautionary measure while using ExtRa Trees from 
Sklearn. 

By default, the bootstrap flag is set to False. 

 

 
 

Make sure you run it with bootstrap=True, otherwise, it will use the 
whole dataset for each tree. 

! Over to you: Can you think of another way to add randomness 
to Random Forest? 
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The Most Overlooked Problem With 
Imputing Missing Values Using Zero 
(or Mean) 

Replacing (imputing) missing values with mean or zero or any 
other fixed value: 

• alters summary statistics 
• changes the distribution 
• inflates the presence of a specific value 

This can lead to: 

• inaccurate modeling 
• incorrect conclusions, and more. 

Instead, always try to impute missing values with more precision. 

kNN imputer is often a great choice in such cases. 

It imputes missing values using the k-Nearest Neighbors 
algorithm. 

Missing features are imputed by running a kNN on non-missing 
feature values. 

The following image depicts how it works: 
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• Step 1: Select a row (r) with a missing value. 
• Step 2: Find its k nearest neighbors using the non-missing 

feature values. 
• Step 3: Impute the missing feature of the row (r) using the 

corresponding non-missing values of k nearest neighbor 
rows. 

• Step 4: Repeat for all rows with missing values. 

Its effectiveness over Mean/Zero imputation is evident from the 
image below. 

 
 
Mean and Zero imputation vs. kNN imputation 

• Mean/Zero alters the summary statistics and distribution. 
• kNN imputer preserves them. 

Get started with kNN imputer: Sklearn Docs.  
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A Visual Guide to Joint, Marginal and 
Conditional Probabilities 
 

 
 

This issue had mathema6cal deriva6ons and many diagrams. Please read it here: 

hBps://www.blog.dailydoseofds.com/p/a-visual-guide-to-joint-marginal 
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Jupyter Notebook 7: Possibly One Of 
The Best Updates To Jupyter Ever 

This is probably one of the best updates to Jupyter Notebook 
ever. 

Jupyter has announced the release of Jupyter Notebook 7 

The developers call it one of the most significant releases in 
years. 

Here are some highlights: 

• Real-time collaboration: Share notebooks with others and 
collaborate. Extremely useful for teams. 

• Interactive debugging: Debug code cell by cell and 
inspect variables. 

• Internationalization: Change language 
• Dark mode 
• Table of contents 

The demo above shows real-time collaboration between two 
notebooks. 

Isn’t that cool? 

The update is in beta. You can read more about it here: Jupyter 
Notebook 7. 

! Over to you: Which of these new updates is your favorite? 

Read the full issue here to watch an animation of real-time 
collaboration feature: 
https://www.blog.dailydoseofds.com/p/jupyter-notebook-7-one-
of-the-best 
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How to Find Optimal Epsilon Value 
For DBSCAN Clustering? 

 

In DBSCAN, determining the epsilon parameter is often tricky. 

Yet, the Elbow curve is often helpful in determining it. 

To begin, DBSCAN has three hyperparameters: 

1. Epsilon: two points are considered neighbors if they are 
closer than Epsilon. 
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2. min_samples: Min neighbors for a point to be classified as 
a core point. 

3. The distance metric. 

We can use the Elbow Curve to find an optimal value of Epsilon: 

Set k as the min_samples hyperparameter. 

For every data point, plot the distance to its kth nearest neighbor 
(in increasing order). 

The optimal value of Epsilon is found near the elbow point. 

Why does it work? 

Recall that we are measuring the distance to a specific (kth) 
neighbor for all points. 

Thus, the elbow point suggests a distance to a more isolated point 
or a point in a different cluster. 

The point where change is most pronounced hints towards an 
optimal epsilon. 

The efficacy is evident from the image above. 

Selecting the elbow value provides better clustering results over 
another value. 

! Over to you: What methods do you use to find an optimal 
epsilon for DBSCAN? 
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Why R-squared is a Flawed 
Regression Metric 

R2 is quite popularly used all across data science and statistics to 
assess a model. 

Yet, contrary to common belief, it is often interpreted as a 
performance metric for evaluating a model, when, in reality, it is 
not. 

Let’s understand! 

R2 tells the fraction of variability in the outcome variable 
captured by a model. 

It is defined as follows: 

 

In simple words, variability depicts the noise in the outcome 
variable (y). 

 

 
Left: The outcome variable has zero variance. Right: The 
outcome variable has a non-zero variance. 

Thus, the more variability captured, the higher the R2. 
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This means that solely optimizing for R2 as a performance 
measure: 

• promotes 100% overfitting. 
• leads us to engineer the model in a way that captures 

random noise instead of underlying patterns. 

It is important to note that: 

• R2 is NOT a measure of predictive power. 
• Instead, R2 is a fitting measure. 

Thus, you should NEVER use it to measure goodness of fit. 

This is evident from the image below: 

 

 
 

• An overly complex and overfitted model almost gets a 
perfect R2 of 1. 

• A better and more generalized model gets a lower R2 score. 
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Some other flaws of R2 are: 

• R2 always increases as you add more features, even if they 
are random noise. 

• In some cases, one can determine R2 even before fitting a 
model, which is weird. 

! Read my full blog on the A-Z of R2, what it is, its limitations, 
and much more here: Flaws of R2 Metric. 

! Over to you: What are some other flaws in R2?  



                                                                blog.DailyDoseofDS.com 
 

 102 

75 Key Terms That All Data Scientists 
Remember By Heart 

 

Data science has a diverse glossary. The sheet lists the 75 most 
common and important terms that data scientists use almost every 
day. 
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Thus, being aware of them is extremely crucial. 

• A: 
o Accuracy: Measure of the correct predictions divided 

by the total predictions. 
o Area Under Curve: Metric representing the area 

under the Receiver Operating Characteristic (ROC) 
curve, used to evaluate classification models. 

o ARIMA: Autoregressive Integrated Moving 
Average, a time series forecasting method. 

• B: 
o Bias: The difference between the true value and the 

predicted value in a statistical model. 
o Bayes Theorem: Probability formula that calculates 

the likelihood of an event based on prior knowledge. 
o Binomial Distribution: Probability distribution that 

models the number of successes in a fixed number of 
independent Bernoulli trials. 

• C: 
o Clustering: Grouping data points based on 

similarities. 
o Confusion Matrix: Table used to evaluate the 

performance of a classification model. 
o Cross-validation: Technique to assess model 

performance by dividing data into subsets for training 
and testing. 

• D: 
o Decision Trees: Tree-like model used for 

classification and regression tasks. 
o Dimensionality Reduction: Process of reducing the 

number of features in a dataset while preserving 
important information. 

o Discriminative Models: Models that learn the 
boundary between different classes. 

• E: 
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o Ensemble Learning: Technique that combines 
multiple models to improve predictive performance. 

o EDA (Exploratory Data Analysis): Process of 
analyzing and visualizing data to understand its 
patterns and properties. 

o Entropy: Measure of uncertainty or randomness in 
information. 

• F: 
o Feature Engineering: Process of creating new 

features from existing data to improve model 
performance. 

o F-score: Metric that balances precision and recall for 
binary classification. 

o Feature Extraction: Process of automatically 
extracting meaningful features from data. 

• G: 
o Gradient Descent: Optimization algorithm used to 

minimize a function by adjusting parameters 
iteratively. 

o Gaussian Distribution: Normal distribution with a 
bell-shaped probability density function. 

o Gradient Boosting: Ensemble learning method that 
builds multiple weak learners sequentially. 

• H: 
o Hypothesis: Testable statement or assumption in 

statistical inference. 
o Hierarchical Clustering: Clustering method that 

organizes data into a tree-like structure. 
o Heteroscedasticity: Unequal variance of errors in a 

regression model. 
• I: 

o Information Gain: Measure used in decision trees to 
determine the importance of a feature. 
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o Independent Variable: Variable that is manipulated 
in an experiment to observe its effect on the 
dependent variable. 

o Imbalance: Situation where the distribution of 
classes in a dataset is not equal. 

• J: 
o Jupyter: Interactive computing environment used for 

data analysis and machine learning. 
o Joint Probability: Probability of two or more events 

occurring together. 
o Jaccard Index: Measure of similarity between two 

sets. 
• K: 

o Kernel Density Estimation: Non-parametric method 
to estimate the probability density function of a 
continuous random variable. 

o KS Test (Kolmogorov-Smirnov Test): Non-
parametric test to compare two probability 
distributions. 

o KMeans Clustering: Partitioning data into K clusters 
based on similarity. 

• L: 
o Likelihood: Chance of observing the data given a 

specific model. 
o Linear Regression: Statistical method for modeling 

the relationship between dependent and independent 
variables. 

o L1/L2 Regularization: Techniques to prevent 
overfitting by adding penalty terms to the model's 
loss function. 

• M: 
o Maximum Likelihood Estimation: Method to 

estimate the parameters of a statistical model. 
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o Multicollinearity: A situation where two or more 
independent variables are highly correlated in a 
regression model. 

o Mutual Information: Measure of the amount of 
information shared between two variables. 

• N: 
o Naive Bayes: Probabilistic classifier based on Bayes 

Theorem with the assumption of feature 
independence. 

o Normalization: Scaling data to have a mean of 0 and 
standard deviation of 1. 

o Null Hypothesis: Hypothesis of no significant 
difference or effect in statistical testing. 

• O: 
o Overfitting: When a model performs well on training 

data but poorly on new, unseen data. 
o Outliers: Data points that significantly differ from 

other data points in a dataset. 
o One-hot encoding: Process of converting categorical 

variables into binary vectors. 
• P: 

o PCA (Principal Component Analysis): 
Dimensionality reduction technique to transform data 
into orthogonal components. 

o Precision: Proportion of true positive predictions 
among all positive predictions in a classification 
model. 

o p-value: Probability of observing a result at least as 
extreme as the one obtained if the null hypothesis is 
true. 

• Q: 
o QQ-plot (Quantile-Quantile Plot): Graphical tool to 

compare the distribution of two datasets. 
o QR decomposition: Factorization of a matrix into an 

orthogonal and an upper triangular matrix. 
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• R: 
o Random Forest: Ensemble learning method using 

multiple decision trees to make predictions. 
o Recall: Proportion of true positive predictions among 

all actual positive instances in a classification model. 
o ROC Curve (Receiver Operating Characteristic 

Curve): Graph showing the performance of a binary 
classifier at different thresholds. 

• S: 
o SVM (Support Vector Machine): Supervised 

machine learning algorithm used for classification 
and regression. 

o Standardisation: Scaling data to have a mean of 0 
and a standard deviation of 1. 

o Sampling: Process of selecting a subset of data 
points from a larger dataset. 

• T: 
o t-SNE (t-Distributed Stochastic Neighbor 

Embedding): Dimensionality reduction technique for 
visualizing high-dimensional data in lower 
dimensions. 

o t-distribution: Probability distribution used in 
hypothesis testing when the sample size is small. 

o Type I/II Error: Type I error is a false positive, and 
Type II error is a false negative in hypothesis testing. 

• U: 
o Underfitting: When a model is too simple to capture 

the underlying patterns in the data. 
o UMAP (Uniform Manifold Approximation and 

Projection): Dimensionality reduction technique for 
visualizing high-dimensional data. 

o Uniform Distribution: Probability distribution 
where all outcomes are equally likely. 

• V: 
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o Variance: Measure of the spread of data points 
around the mean. 

o Validation Curve: Graph showing how model 
performance changes with different hyperparameter 
values. 

o Vanishing Gradient: Issue in deep neural networks 
when gradients become very small during training. 

• W: 
o Word embedding: Representation of words as dense 

vectors in natural language processing. 
o Word cloud: Visualization of text data where word 

frequency is represented through the size of the word. 
o Weights: Parameters that are learned by a machine 

learning model during training. 
• X: 

o XGBoost: Extreme Gradient Boosting, a popular 
gradient boosting library. 

o XLNet: Generalized Autoregressive Pretraining of 
Transformers, a language model. 

• Y: 
o YOLO (You Only Look Once): Real-time object 

detection system. 
o Yellowbrick: Python library for machine learning 

visualization and diagnostic tools. 
• Z: 

o Z-score: Standardized value representing how many 
standard deviations a data point is from the mean. 

o Z-test: Statistical test used to compare a sample mean 
to a known population mean. 

o Zero-shot learning: Machine learning method where 
a model can recognize new classes without seeing 
explicit examples during training. 

! Over to you: Of course, a lot has been left out here. As an 
exercise, can you add more terms to this?  
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The Limitation of Static Embeddings 
Which Made Them Obsolete 

 

To build models for language-oriented tasks, it is crucial to 
generate numerical representations (or vectors) for words. 

 

 
Text to embedding overview 
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This allows words to be processed and manipulated 
mathematically and perform various computational operations on 
words. 

The objective of embeddings is to capture semantic and syntactic 
relationships between words. This helps machines understand and 
reason about language more effectively. 

In the pre-Transformers era, this was primarily done using pre-
trained static embeddings. 

Essentially, someone would train and release these word 
embeddings for, say, 100k, or 200k common words using deep 
learning. 

…and other researchers may utilize those embeddings in their 
projects. 

The most popular models at that time (around 2013-2018ish) 
were: 

• Glove 
• Word2Vec 
• FastText, etc. 

These embeddings genuinely showed some promising results in 
learning the relationships between words. 

For instance, running the vector operation (King - Man) + Woman would 
return a vector near the word “Queen”. 
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(King-Man) approximates to (Queen - Woman) 

So while these did capture relative representations of words, there 
was a major limitation. 

Consider the following two sentences: 

• “Convert this data into a table in Excel.” 
• “Put this bottle on the table.” 

The word “table” conveys two entirely different meanings in the 
two sentences. 

• The first sentence refers to a “data” specific sense of the 
word “table”. 

• The second sentence refers to a “furniture” specific sense 
of the word “table”. 

Yet, static embedding models assigned them the same 
representation. 

 

 
Same embedding for different usages of a word 
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Thus, these embeddings didn’t consider that a word may have 
different usages in different contexts. 

But this changed in the Transformer era, which resulted in 
contextualized embeddings models powered by Transformers, 
such as: 

• BERT: A language model trained using two techniques: 
 

 

BERT pre-training 

o Masked Language Modeling (MLM): Predict a 
missing word in the sentence, given the surrounding 
words. 

o Next Sentence Prediction (NSP). 
• DistilBERT: A simple, effective, and lighter version of 

BERT which is around 40% smaller: 
 

 

Training DistilBERT 
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o Utilizes a common machine learning strategy called 
student-teacher theory. 

o Here, the student is the distilled version of BERT, 
and the teacher is the original BERT model. 

o The student model is supposed to replicate the 
teacher model’s behavior. 

• ALBERT: A Lite BERT (ALBERT). Uses a couple of 
optimization strategies to reduce the size of BERT: 

o Eliminates one-hot embeddings at the initial layer by 
projecting the words into a low-dimensional space. 

o Shares the weights across all the network segments of 
the Transformer model. 

These were capable of generating context-aware representations, 
thanks to their self-attention mechanism. 

This would allow embedding models to dynamically generate 
embeddings for a word based on the context they were used in. 

As a result, if a word would appear in a different context, the 
model would get a different representation. 

This is precisely depicted in the image below for different uses of 
the word “Bank”. 

For visualization purposes, the embeddings have been projected 
into 2d space using t-SNE. 
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Glove vs. BERT on understanding different senses of a word 

The static embedding models — Glove and Word2Vec produce 
the same embedding for different usages of a word. 

However, contextualized embedding models don’t. 

In fact, contextualized embeddings understand the different 
meanings/senses of the word “Bank”: 

• A financial institution 
• Sloping land 
• A Long Ridge, and more. 

Different senses were taken from Priceton’s Wordnet database 
here: WordNet. 
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As a result, they addressed the major limitations of static 
embedding models. 

For those who wish to learn in more detail, I published a couple 
of research papers on this intriguing topic: 

• Interpretable Word Sense Disambiguation with 
Contextualized Embeddings. 

• A Comparative Study of Transformers on Word Sense 
Disambiguation. 

These papers discuss the strengths and limitations of many 
contextualized embedding models in detail. 

! Over to you: What do you think were some other pivotal 
moments in NLP research? 
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An Overlooked Technique To Improve 
KMeans Run-time 

The standard KMeans algorithm involves a brute-force approach. 

To recall, KMeans is trained as follows: 

• Initialize centroids 
• Find the nearest centroid for each point 
• Reassign centroids 
• Repeat until convergence 

As a result, the run-time of KMeans depends on four factors: 

• Number of iterations (i) 
• Number of samples (n) 
• Number of clusters (k) 
• Number of features (d) 

 
O(i*n*k*d)) 

In fact, you can add another factor here — “the repetition factor”, 
where, we run the whole clustering repeatedly to avoid 
convergence issues. 

But we are ignoring that for now. 

While we cannot do much about the first three, reducing the 
number of features is quite possible, yet often overlooked. 

Sparse Random Projection is an efficient projection technique for 
reducing dimensionality. 

Some of its properties are: 

• It projects the original data to lower dimensions using a 
sparse random matrix. 
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• It provides similar embedding quality while being memory 
and run-time efficient. 

• The similarity and dissimilarity between points are well 
preserved. 

The visual below shows the run-time comparison of KMeans on: 

• Standard high-dimensional data, vs. 
• Data projected to lower dimensions using Sparse Random 

Projection. 
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As shown, Sparse Random Projection provides: 

• Similar performance, and 
• a MASSIVE run-time improvement of 10x. 

This can be especially useful in high-dimensional datasets. 

Get started with Sparse Random Projections here: Sklearn Docs. 

For more info, here’s the paper that discussed it: Very Sparse 
Random Projections. 

! Over to you: What are some other ways to improve KMeans 
run-time? 
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The Most Underrated Skill in 
Training Linear Models 

 

Yesterday’s post on Poisson regression was appreciated by many 
of you. 

Today, I want to build on that and help you cultivate what I think 
is one of the MOST overlooked and underappreciated skills in 
developing linear models. 

I can guarantee that harnessing this skill will give you so much 
clarity and intuition in the modeling stages. 

But let’s do a quick recap of yesterday’s post before we proceed. 

 
Recap 

Having a non-negative response in the training data does not stop 
linear regression from outputting negative values. 
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Essentially, you can always extrapolate the regression fit for 
some inputs to get a negative output. 

 

 
Extrapolation of the linear regression fit 

While this is not an issue per se, negative outputs may not make 
sense in cases where you can never have such outcomes. 

For instance: 

• Predicting the number of calls received. 
• Predicting the number of cars sold in a year, etc. 

More specifically, the issue arises when modeling a count-based 
response, where a negative output wouldn’t make sense. 

In such cases, Poisson regression often turns out to be a more 
suitable linear model than linear regression. 

This is evident from the image below: 
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Please read yesterday’s post for in-depth info: Poisson 
Regression: The Robust Extension of Linear Regression. 

 

Here, I want you to understand that Poisson regression is no 
magic. 

It’s just that, in this specific use case, the data generation process 
didn’t perfectly align with what linear regression is designed to 
handle. 

In other words, as soon as we trained a linear regression model 
above, we inherently assumed that the data was sampled from a 
normal distribution. 

But that was not true in this case. 
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Instead, it came from a Poisson distribution, which is why 
Poisson regression worked better. 

Thus, the takeaway is that whenever you train linear 
models, always always and always think about the data 
generation process. 

This goes like this: 

• Okay, I have this data. 
• I want to fit a linear model through it. 
• What information do I get from the label about the data 

generation process that can help me select an appropriate 
linear model? 
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You’d start appreciating the importance of data generation when 
you’d realize that literally EVERY extension of linear regression 
(or a member of the generalized linear model family) stems from 
altering the data generation process. 

For instance: 

• If the data generation process involves a Normal 
distribution → you get linear regression. 

• If the data has only positive integers in the response 
variable, maybe it came from a Poisson distribution → 
and this gives us Poisson regression. This is precisely what 
we discussed yesterday. 

• If the data has only two targets — 0 and 1, maybe it was 
generated using Bernoulli distribution → and this gives 
rise to logistic regression. 

• If the data has finite and fixed categories (0, 1, 2,…n), then 
this hints towards Binomial distribution → and we get 
Binomial regression. 

See… 

Every linear model makes an assumption and is then derived 
from an underlying data generation process. 
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Thus, developing a habit of stepping back and thinking about the 
data generation process will give you so much clarity in the 
modeling stages. 

I am confident this will help you get rid of that annoying and 
helpless habit of relentlessly using a specific sklearn algorithm 
without truly knowing why you are using it. 

Consequently, you’d know which algorithm to use and, most 
importantly, why. 

This improves your credibility as a data scientist and allows you 
to approach data science problems with intuition and clarity 
rather than hit-and-trial. 

Hope you learned something new. 
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Poisson Regression: The Robust 
Extension of Linear Regression 
 

 
 

Read the full issue here: hBps://www.blog.dailydoseofds.com/p/poisson-

regression-the-robust-extension 
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The Biggest Mistake ML Folks Make 
When Using Multiple Embedding 
Models 

 

Imagine you have two different models (or sub-networks) in your 
whole ML pipeline. 

Both generate a representation/embedding of the input in the 
same dimensions (say, 200). 
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These could also be pre-trained models used to generate 
embeddings—Bert, XLNet, etc. 

Here, many folks get tempted to make them interact. 

They would: 

• compare these representations 
• compute their Euclidean distance 
• compute their cosine similarity, and more. 

The rationale is that the representations have the same 
dimensions. Thus, they can seamlessly interact. 

However, that is NOT true, and you should NEVER do that. 

Why? 

Even though these embeddings have the same length, they are out 
of space. 

Out of space means that their axes are not aligned. 

To simplify, imagine both embeddings were in a 3D space. 

Now, assume that their z-axes are aligned. 

But the x-axis of one of them is at an angle to the x-axis of the 
other. 
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As a result, coordinates from these two spaces are no longer 
comparable. 

Similarly, comparing the embeddings from two networks would 
inherently assume that all axes are perfectly aligned. 

But this is highly unlikely because there are infinitely many ways 
axes may orient relative to each other. 

Thus, the representations can NEVER be compared, unless they 
are generated by the same model. 

This is a mistake that may cause some serious trouble in your ML 
pipeline. 

Also, it can easily go unnoticed, so it is immensely crucial to be 
aware of this. 

Hope that helped! 

! Over to you: How do you typically handle embeddings from 
multiple models?  
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Probability and Likelihood Are Not 
Meant To Be Used Interchangeably 

 

In data science and statistics, folks often use “probability” and 
“likelihood” interchangeably. 

However, Likelihood and probability DO NOT convey the same 
meaning. 

And the misunderstanding is somewhat understandable, given 
that they carry similar meanings in our regular language. 

While writing today’s newsletter, I searched for their meaning in 
the Cambridge Dictionary. 

Here’s what it says: 

• Probability: the level of possibility of something 
happening or being true/ (Source) 

• Likelihood: the chance that something will happen. 
(Source) 
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It amused me that “likelihood” is the only synonym of 
“probability”. 

 

 
 

Anyway. 

In my opinion, it is crucial to understand that probability and 
Likelihood convey very different meanings in data science and 
statistics. 

Let’s understand! 

 

Probability is used in contexts where you wish to know the 
possibility/odds of an event. 

For instance, what is the: 

• Probability of obtaining an even number in a die roll? 
• Probability of drawing an ace of diamonds from a deck? 
• and so on… 

When translated to ML, probability can be thought of as: 



                                                                blog.DailyDoseofDS.com 
 

 131 

• What is the probability that a transaction is fraud? 
• What is the probability that an image depicts a cat? 
• and so on… 

 

 
 

Essentially, many classification models, like logistic regression or 
a neural network, etc., assign the probability of a specific label 
to an input. 

When calculating probability, the model's parameters are known. 
Also, we assume that they are trustworthy. 

For instance, to determine the probability of a head in a coin toss, 
we assume and trust that it is a fair coin. 

 

Likelihood, on the other hand, is about explaining events that 
have already occurred. 

Unlike probability (where parameters are known and assumed to 
be trustworthy)... 

Likelihood helps us determine if we can trust the parameters in a 
model based on the observed data. 

Here’s how we use it in the context of data science and machine 
learning. 

Assume you have collected some 2D data and wish to fit a 
straight line with two parameters — slope (m) and intercept (c). 
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Here, Likelihood is defined as the support provided by a data 
point for some particular parameter values in your model. 

 

 
 

Here, you will ask questions like: 

• If I model this data with the parameters: 
o m=2 and c=1, what is the Likelihood of observing the 

data? 
o m=3 and c=2, what is the Likelihood of observing the 

data? 
o and so on… 

The above formulation popularly translates into the maximum 
likelihood estimation (MLE). 

In maximum likelihood estimation, you have some observed data 
and you are trying to determine the specific set of parameters (θ) 
that maximize the Likelihood of observing the data. 
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Using the term “likelihood” is like: 

• I have a possible explanation for my data. (In the above 
illustration, “explanation” can be thought of as the 
parameters you are trying to determine) 

• How well my explanation explains what I’ve already 
observed? This is precisely quantified using Likelihood. 

For instance: 

• Observation: The outcomes of 10 coin tosses are 
“HHHHHHHTHH”. 

• Explanation: I think it is a fair coin (p=0.5). 
• What is the Likelihood that my explanation is true based on 

the observed data? 
 

To summarize… 

It is immensely important to understand that in data science and 
statistics, Likelihood and probability DO NOT convey the same 
meaning. 
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As explained above, they are pretty different. 

In Probability: 

• We determine the possibility of an event. 
• We know the parameters associated with the event and 

assume them to be trustworthy. 

In Likelihood: 

• We have some observations. 
• We have an explanation (or parameters). 
• Likelihood helps us quantify whether the explanation is 

trustworthy. 

Hope that helped! 

! Over to you: I would love to hear your explanation of 
probability and Likelihood. 
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SummaryTools: A Richer Alternative 
To Pandas' Describe Method. 

 

Summarytools is a Jupyter-based tool that provides a 
standardized and comprehensive data summary. 

By invoking a single function, you can generate the above report 
in seconds. 

This includes: 

• column statistics, 
• data type info, 
• frequency, 
• distribution chart, and 
• and missing stats. 

Get started with Summary Tools here: Summary Tools.  
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40 NumPy Methods That Data 
Scientists Use 95% of the Time 

 

NumPy holds wide applicability in industry and academia due to 
its unparalleled potential. 

Thus, being aware of its most common methods is necessary for 
Data Scientists. 

Yet, it is important to understand that whenever you are learning 
a new library, mastering/practicing each and every method is not 
necessary. 

What’s more, this may be practically infeasible and time-
consuming in many cases. 

Instead, put Pareto’s principle to work: 
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20% of your inputs contribute towards generating 80% of your 
outputs. 

In other words, there are always some specific methods that are 
most widely used. 

The above visual depicts the 40 most commonly used methods 
for NumPy. 

Having used NumPy for over 4 years, I can confidently say that 
you will use these methods 95% of the time working with 
NumPy. 

If you are looking for an in-depth guide, you can read my article 
on Medium here: Medium NumPy article. 
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An Overly Simplified Guide To 
Understanding How Neural Networks 
Handle Linearly Inseparable Data 

 

Many folks struggle to truly comprehend how a neural network 
learns complex non-linear patterns. 

Here’s an intuitive explanation to understand the data 
transformations performed by a neural network when modeling 
linearly inseparable data. 

 

We know that in a neural network, the data is passed through a 
series of transformations at every hidden layer. 
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This involves: 

• Linear transformation of the data obtained from the 
previous layer 

• …followed by a non-linearity using an activation function 
— ReLU, Sigmoid, Tanh, etc. 

• This is depicted below: 
 

 
 

For instance, consider a neural network with just one hidden 
layer: 
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The data is transformed at the hidden layer along with an 
activation function. 

Lastly, the output of the hidden layer is transformed to obtain the 
final output. 

It’s time to notice something here. 

When the data comes out of the last hidden layer, and it is 
progressing towards the output layer for another transformation, 
EVERY activation function that ever existed in the network has 
already been utilized. 

 

 
 

In other words, in any neural network, all sources of non-linearity 
— “activation functions”, exist on or before the last hidden layer. 
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And while progressing from the last hidden layer to the output 
layer, the data will pass through one final transformation before it 
spits some output. 

 

 
 

But given that the transformation from the last hidden layer to the 
output layer is entirely linear (or without any activation function), 
there is no further scope for non-linearity in the network. 
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On a side note, the transformation from the last hidden layer to 
the output layer (assuming there is only one output neuron) can 
be thought of as a: 

• linear regression model for regression tasks, or, 
• logistic regression if you are modeling class probability 

with sigmoid function. 

Thus, to make accurate predictions, the data received by the 
output layer from the last hidden layer MUST BE linearly 
separable. 

To summarize… 

While transforming the data through all its hidden layers and just 
before reaching the output layer, a neural network is constantly 
hustling to project the data to a latent space where it becomes 
linearly separable. 

Once it does, the output layer can easily handle the data. 

We can also verify this experimentally. 

To visualize the input transformation, add a dummy hidden layer 
with just two neurons right before the output layer and train the 
neural network again. 
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Why two neurons? 

It’s simple. 

So that we can visualize it easily. 

We expect that if we plot the activations of this 2D dummy 
hidden layer, they should be linearly separable. 

The below visual precisely depicts this. 
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As we notice above, while the input data was linearly inseparable, 
the input received by the output layer is indeed linearly separable. 

This transformed data can be easily handled by the output 
classification layer. 

Hope that helped! 

Feel free to respond with any queries that you may have. 

! If you wish to experiment yourself, the code is available 
here: Notebook. 
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2 Mathematical Proofs of Ordinary 
Least Squares 

 

Most machine learning algorithms use gradient descent to learn 
the optimal parameters. 

However, in addition to gradient descent, linear regression can 
model data using another technique called ordinary least squares 
(OLS). 

Ordinary Least Square (OLS): 
1. It is a deterministic algorithm. If run multiple times, it will 

always converge to the same weights. 
2. It always finds the optimal solution. 

The above image shows two ways to find the OLS solution of 
OLS. 
Full issue here: https://www.blog.dailydoseofds.com/p/2-
mathematical-proofs-of-ordinary 
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A Common Misconception About Log 
Transformation 

 

Log transform is commonly used to eliminate skewness in data. 

Yet, it is not always the ideal solution for eliminating skewness. 

It is important to note that log transform: 

• Does not eliminate left-skewness. 
• Only works for right-skewness, that too when the values are 

small and positive. 

This is also evident from the image above. 

It is because the log function grows faster for lower values. Thus, 
it stretches out the lower values more than the higher values. 
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Graph of log(x) 

Thus, 

• In case of left-skewness: 
 

 

Left-skewness with log transform 

o The tail exists to the left, which gets stretched out 
more than those to the right 

o Thus, skewness isn't affected much. 
• In case of right-skewness: 
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Right-skewness with log transform 

o Majority of values and peak exists to the left, which 
get stretched out more. 

o However, the log function grows slowly when the 
values are large. Thus, the impact of stretch is low. 

There are a few things you can do: 

• See if transformation can be avoided as it inhibits 
interpretability. 

• If not, try box-cox transform. It is often quite effective, 
both for left-skewed and right-skewed data. You can use it 
using Scipy’s implementation: Scipy docs. 

! Over to you: What are some other ways to eliminate 
skewness? 
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Raincloud Plots: The Hidden Gem of 
Data Visualisation 

 

Visualizing data distributions using box plots and histograms can 
be misleading at times. 

This is because: 

• It is possible to get the same box plot with entirely different 
data. 

o For instance, consider the illustration below from one 
of my previous posts: Use Box Plots With Caution! 
They May Be Misleading. 
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o We get the same box plot with three different 
datasets. 

• Altering the number of bins changes the shape of a 
histogram. 

o Read this post here. 
 

 

 

Thus, to avoid misleading conclusions, it is recommended to plot 
the data distribution. 

Here, jitter (strip) plots and KDE plots are immensely helpful. 

One way is to draw them separately and analyze them together, as 
shown below. But this is quite tedious. 
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Instead, try Raincloud plots. 

They provide a concise way to combine and visualize three 
different types of plots together. 

These include: 

• Box plots for data statistics. 
• Strip plots for data overview. 
• KDE plots for the probability distribution of data. 

 

 
Raincloud plot with Box, strip and KDE plot at once 

Overall, Raincloud plots are an excellent choice for data 
visualization. 

With Raincloud plots, you can: 

• Combine multiple plots to prevent incorrect/misleading 
conclusions 



                                                                blog.DailyDoseofDS.com 
 

 152 

• Reduce clutter and enhance clarity 
• Improve comparisons between groups 
• Capture different aspects of the data through a single plot 

You can use the PtitPrince library to create Raincloud plots in 
Python: GitHub. 

R users can use Raincloud Plots library: GitHub. 

P.S. If the name “Raincloud plot” isn’t obvious yet, it comes from 
the visual appearance of the plot: 

 

 
The origin of the name “Raincloud plot” 

! Over to you: What are some other hidden gems of data 
visualization? 
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7 Must-know Techniques For 
Encoding Categorical Feature 

 
Almost all real-world datasets come with multiple types of features. 

These primarily include: 

a. Categorical 

b. Numerical 

While numerical features can be directly used in most ML models 
without any additional preprocessing, categorical features require 
encoding to be represented as numerical values. 

On a side note, do you know that not all ML models need categorical 
feature encoding? Read one of my previous guides on this here: Is 
Categorical Feature Encoding Always Necessary Before Training 
ML Models? 

 

If categorical features do need some additional processing, being aware 
of the common techniques to encode them is crucial. 

The above visual summarizes 7 most common methods for encoding 
categorical features. 

Read the full issue here: https://www.blog.dailydoseofds.com/p/7-
must-know-techniques-for-encoding 
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Automated EDA Tools That Let You 
Avoid Manual EDA Tasks 

 
  

EDA is a vital step in all data science projects. 

It is important because examining and understanding the data directly 
aids the modeling stage. 
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By uncovering hidden insights and patterns, one can make informed 
decisions about subsequent steps in the project. 

Despite its importance, it is often a time-consuming and tedious task. 

The above visual summarizes 8 powerful EDA tools, that automate 
many redundant steps of EDA and help you profile your data in quick 
time. 

Read the full issue here to learn more about each of these tools: 
h4ps://www.blog.dailydoseofds.com/p/automated-eda-tools-that-let-you 
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The Limitation Of Silhouette Score 
Which Is Often Ignored By Many 

 
Silhouette score is commonly used for evaluating clustering results. 

At times, it is also preferred in place of the elbow curve to determine 

the optimal number of clusters. (I have covered this before if 
you wish to recap or learn more). 

However, while using the Silhouette score, it is also important to be 
aware of one of its major shortcomings. 

The Silhouette score is typically higher for convex (or somewhat 
spherical) clusters. 

However, using it to evaluate arbitrary-shaped clustering can produce 
misleading results. 

This is also evident from the following image: 
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While the clustering output of KMeans is worse, the Silhouette score is 
still higher than Density-based clustering. 

DBCV — density-based clustering validation is a better metric in such 
cases. 

As the name suggests, it is specifically meant to evaluate density-based 
clustering. 

Simply put, DBCV computes two values: 

a. The density within a cluster 

b. The density between clusters 

A high density within a cluster and a low density between clusters 
indicates good clustering results. 

DBCV can also be used when you don’t have ground truth labels. 
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This adds another metric to my recently proposed methods: Evaluate 
Clustering Performance Without Ground Truth Labels. 

The effectiveness of DBCV is also evident from the image below: 

 

 

 

This time, the score for the clustering output of KMeans is worse, and 
that of density-based clustering is higher. 

Get started with DBCV here: GitHub. 

! Over to you: What are some other ways to evaluate clustering 
where traditional metrics may not work? 
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9 Must-Know Methods To Test Data 
Normality 

 

The normal distribution is the most popular distribution in data 
science. 

Many ML models assume (or work better) under the presence of normal 
distribution. 

For instance: 

1. linear regression assumes residuals are normally distributed 

2. at times, transforming the data to normal distribution can be 

beneficial (Read one of my previous posts on this here) 

3. linear discriminant analysis (LDA) is derived under the 
assumption of normal distribution 

4. and many more. 

Thus, being aware of the ways to test normality is extremely crucial 
for data scientists. 

The visual above depicts the 9 most common methods to test normality. 
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#1) Plotting methods: 
Histogram 

QQ Plot: 

 

 

1. It depicts the quantiles of the observed distribution (the given 
data in this case) against the quantiles of a reference distribution 
(the normal distribution in this case). 

2. A good QQ plot will show minimal deviations from the reference 
line, indicating that the data is approximately normally 
distributed. 

3. A bad QQ plot will exhibit significant deviations, indicating a 
departure from normality. 

KDE (Kernel Density Estimation) Plot: 
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1. It provides a smoothed, continuous representation of the 
underlying distribution of a dataset. 

2. It represents the data using a continuous probability density 
function. 

Box plot 

Violin plot: 

 

 

1.  A combination of a box plot and a KDE plot. 

 

#2) Statistical methods: 
While the plotting methods discussed above are often reliable, they 
offer a subjective method to test normality. 

In other words, the approach of visual interpretation is prone to human 
errors. 

Thus, it is important to be aware of quantitative measures as well. 

Shapiro-Wilk test: 

a. The most common method for testing normality. 

b. It calculates a statistic based on the correlation between the data 
and the expected values under a normal distribution. 

c. This results in a p-value that indicates the likelihood of 
observing such a correlation if the data were normally 
distributed. 

d. A high p-value indicates the presence of samples drawn from a 
normal distribution. 

e. Get started: Scipy Docs. 
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Kolmogorov-Smirnov (KS) test: 

a. The Kolmogorov-Smirnov test is typically used to determine if a 
dataset follows a specific distribution—normal distribution in 
normality testing. 

b. The KS test compares the cumulative distribution function 
(CDF) of the data to the cumulative distribution function (CDF) 
of a normal distribution. 

c. The output statistic is based on the maximum difference between 
the two distributions. 

d. A high p-value indicates the presence of samples drawn from a 
normal distribution. 

e. Get started: Scipy Docs. 

Anderson-Darling test 

a. Another method to determine if a dataset follows a specific 
distribution—normal distribution in normality testing. 

b. It provides critical values at different significance levels. 

c. Comparing the obtained statistic to these critical values 
determines whether we will reject or fail to reject the null 
hypothesis of normality. 

d. Get started: Scipy Docs. 

Lilliefors test 

a. It is a modification of the Kolmogorov-Smirnov test. 

b. The KS test is appropriate in situations where the parameters of 
the reference distribution are known. 

c. However, if the parameters are unknown, Lilliefors is 
recommended. 

d. Get started: Statsmodel Docs. 

If you are looking for an in-depth review and comparison of these 

tests, I highly recommend reading this research paper: Power 
comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, 
Lilliefors and Anderson-Darling tests. 

" Over to you: What other common methods have I missed? 
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A Visual Guide to Popular Cross 
Validation Techniques 

 
Tuning and validating machine learning models on a single validation 
set can be misleading at times. 

While traditional validation methods, such as a single train-test split, 
are easy to implement, they, at times, can yield overly optimistic 
results. 

This can occur due to a lucky random split of data which results in a 
model that performs exceptionally well on the validation set but poorly 
on new, unseen data. 
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That is why we often use cross-validation instead of simple single-set 
validation. 

Cross-validation involves repeatedly partitioning the available data 
into subsets, training the model on a few subsets, and validating on the 
remaining subsets. 

The main advantage of cross-validation is that it provides a more 
robust and unbiased estimate of model performance compared to the 
traditional validation method. 

The image above presents a visual summary of five of the most 
commonly used cross-validation techniques. 

Leave-One-Out Cross-Validation 

 

 

1. Leave one data point for validation. 

2. Train the model on the remaining data points. 

3. Repeat for all points. 

4. This is practically infeasible when you have tons of data points. 
This is because number of models is equal to number of data 
points. 

5. We can extend this to Leave-p-Out Cross-Validation, where, in 
each iteration, p observations are reserved for validation and the 
rest are used for training. 
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K-Fold Cross-Validation 

 

 

 

1. Split data into k equally-sized subsets. 

2. Select one subset for validation. 

3. Train the model on the remaining subsets. 

4. Repeat for all subsets. 

Rolling Cross-Validation 

 

 

 

1. Mostly used for data with temporal structure. 

2. Data splitting respects the temporal order, using a fixed-size 
training window. 

3. The model is evaluated on the subsequent window. 
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Blocked Cross-Validation 

 

 

 

1. Another common technique for time-series data. 

2. In contrast to rolling cross-validation, the slice of data is 
intentionally kept short if the variance does not change 
appreciably from one window to the next. 

3. This also saves computation over rolling cross-validation. 

Stratified Cross-Validation 

 

 

 

1. The above techniques may not work for imbalanced datasets. 
Thus, this technique is mostly used for preserving the class 
distribution. 

2. The partitioning ensures that the class distribution is preserved. 

" Over to you: What other cross-validation techniques have I missed? 
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Decision Trees ALWAYS Overfit. 
Here's A Lesser-Known Technique To 
Prevent It. 
By default, a decision tree (in sklearn’s implementation, for instance), 
is allowed to grow until all leaves are pure. 

As the model correctly classifies ALL training instances, this leads to: 

1. 100% overfitting, and 

2. poor generalization 

 

 

 

Cost-complexity-pruning (CCP) is an effective technique to prevent 
this. 

CCP considers a combination of two factors for pruning a decision 
tree: 

1. Cost (C): Number of misclassifications 

2. Complexity (C): Number of nodes 

The core idea is to iteratively drop sub-trees, which, after removal, 
lead to: 

1. a minimal increase in classification cost 

2. a maximum reduction of complexity (or nodes) 

In other words, if two sub-trees lead to a similar increase in 
classification cost, then it is wise to remove the sub-tree with more 
nodes. 
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Cost-complexity pruning at the same increase in misclassification cost. 

In sklearn, you can control cost-complexity-pruning using 
the ccp_alpha parameter: 

1. large value of ccp_alpha → results in underfitting 

2. small value of ccp_alpha → results in overfitting 

The objective is to determine the optimal value of ccp_alpha, which 
gives a better model. 

The effectiveness of cost-complexity-pruning is evident from the 
image below: 

 

 

 

" Over to you: What are some other ways you use to prevent decision 
trees from overfitting? 
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Evaluate Clustering Performance 
Without Ground Truth Labels 

 
 

In the absence of ground truth labels, evaluating clustering 
performance is difficult. 

Yet, there are a few performance metrics that can help. 

Using them, you can compare multiple clustering results, say, those 
obtained with a different number of centroids. 

This is especially useful for high-dimensional datasets, as visual 
evaluation is difficult. 
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Silhoutte Coefficient: 

 

 

1. for every point, find average distance to all other points within 
its cluster (A) 

2. for every point, find average distance to all points in the nearest 
cluster (B) 

3. score for a point is (B-A)/max(B, A) 

4. compute the average of all individual scores to get the overall 
clustering score 

5. computed on all samples, thus, it's computationally expensive 

6. a higher score indicates better and well-separated clusters. 

I covered this here if you wish to understand Silhoutte Coefficient with 

diagrams: The Limitations Of Elbow Curve And What 
You Should Replace It With. 

Calinski-Harabasz Index: 
 

 

 

1. A: sum of squared distance between all centroids and overall 
dataset center 



                                                                blog.DailyDoseofDS.com 
 

 171 

2. B: sum of squared distance between all points and their specific 
centroid 

3. metric is computed as A/B (with an additional scaling factor) 

4. relatively faster to compute 

5. it is sensitive to scale 

6. a higher score indicates well-separated clusters 

Davies-Bouldin Index: 

 

 

 

measures the similarity between clusters 

thus, a lower score indicates dissimilarity and better clustering 

Luckily, they are neatly integrated with sklearn too. 

Silhoutte Coefficient 

Calinski-Harabasz Index 

Davies-Bouldin Index 

" Over to you: What are some other ways to evaluate clustering 
performance in such situations? 
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One-Minute Guide To Becoming a 
Polars-savvy Data Scientist 

 
Pandas is an essential library in almost all Data Science projects. 

But it has many limitations. 

For instance, Pandas: 

always adheres to single-core computation 

offers no lazy execution 

creates bulky DataFrames 

is slow on large datasets, and many more 

Polars is a lightning-fast DataFrame library that addresses these 
limitations. 

It provides two APIs: 

Eager: Executed instantly, like Pandas. 

Lazy: Executed only when one needs the results. 
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The visual presents the syntax comparison of Polars and Pandas for 
various operations. 

It is clear that Polars API is extremely similar to Pandas'. 

Thus, contrary to common belief, the transition from Pandas to Polars 
is not that intimidating and tedious. 

If you know Pandas, you (mostly) know Polars. 

In most cases, the transition will require minimal code updates. 

But you get to experience immense speed-ups, which you don't get 
with Pandas. 

I recently did a comprehensive benchmarking of Pandas and Polars, 

which you can read here: Pandas vs Polars — Run-time and 
Memory Comparison. 

" Over to you: What are some other faster alternatives to Pandas that 
you are aware of? 
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The Most Common Misconception 
About Continuous Probability 
Distributions 

 
 

This issue has many mathematical formulations. 

Pleaase read it here: https://www.blog.dailydoseofds.com/p/the-most-
common-misconception-about-470 
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Don't Overuse Scatter, Line and Bar 
Plots. Try These Four Elegant 
Alternatives. 
Scatter, bar, and line plots are the three most commonly used plots to 
visualize data. 

While these plots do cover a wide variety of visualization use cases, 
many data scientists use them excessively in every possible place. 

Here are some alternatives that can supercharge your visualizations. 

Scatter plot alternatives 
When you have thousands of data points, scatter plots can get too 
dense to interpret. 
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Instead, you can replace them with Hexbin or KDE plots. 

Hexbin plots bin the area of a chart into hexagonal regions. Each 
region is assigned a color intensity based on the method of aggregation 
used (the number of points, for instance). 

A KDE plot illustrates the distribution of a set of points in a two-
dimensional space. 

A contour is created by connecting points of equal density. In other 
words, a single contour line depicts an equal density of data points. 

Bar plot alternative 
When you have many categories to depict, the plot can easily get 
cluttered and messy. 

 

 

 

Instead, you can replace them with Dot plots. They are like scatter 
plots but with one categorical and one continuous axis. 

Line/Bar plot alternative 
When visualizing the change in value over time, it is difficult to depict 
incremental changes with a bar/line plot. 
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Bar/Line plot alternative — Waterfall chart 

Instead, try Waterfall charts. The changes are automatically color-
coded, making them easier to interpret. 

" Over to you: What are some other elegant alternatives to commonly 
used plots? 

I have written a Medium article on this if you are interested in learning 

more: Medium Blog. 

  



                                                                blog.DailyDoseofDS.com 
 

 178 

CNN Explainer: Interactively 
Visualize a Convolutional Neural 
Network 

 
 

Convolutional Neural Networks (CNNs) have been a revolutionary 
deep learning architecture in computer vision. 

On a side note, we know that CNNs are mostly used for computer 
vision tasks etc. But they are also used in NLP applications 

too. Further reading. 

The core component of a CNN is convolution, which allows them to 
capture local patterns, such as edges and textures, and helps in 
extracting relevant information from the input. 

Yet, at times, understanding: 

1. how CNNs internally work 

2. how inputs are transformed 

3. what is the representation of the image after each layer 

4. how convolutions are applied 

5. how pooling operation is applied 

6. how the shape of the input changes, etc. 
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…is indeed difficult. 

If you have ever struggled to understand CNN, you should use CNN 
Explainer. 

It is an incredible interactive tool to visualize the internal workings of 
a CNN. 

Essentially, you can play around with different layers of a CNN and 
visualize how a CNN applies different operations. 

Try it here: CNN Explainer. 

" Over to you: What are some interactive tools to visualize different 
machine learning models/architectures, that you are aware of? 
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Sankey Diagrams: An Underrated 
Gem of Data Visualization 

 
 

Many tabular data analysis tasks can be interpreted as a flow between 
the source and a target. 

Instead of manually analyzing tabular data, try to represent them as 
Sankey diagrams. 

They immensely simplify the data analysis process. 

For instance, from the diagram above, one can quickly infer that: 

1. Washington hosts flights from all origins 

2. New York only receives passengers from London 

3. Majority of flights in Los Angeles come from Dubai 

4. All flights from New Delhi go to Washington 

Now imagine doing that by just looking at the tabular data. 

1) It will be time-consuming 

2) You may miss out on a few insights 

" Over to you: What are some other ways you use to simplify data 
analysis? 
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A Common Misconception About 
Feature Scaling and Standardization 

 
 

Feature scaling and standardization are common ways to alter a 
feature’s range. 

For instance: 

 
It is desired because it prevents a specific feature from strongly 
influencing the model’s output. What’s more, it ensures that the model 
is more robust to variations in the data. 
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In the image above, the scale of Income could massively impact the 
overall prediction. Scaling (or standardizing) the data to a similar 
range can mitigate this and improve the model’s performance. 

Yet, contrary to common belief, they NEVER change the underlying 
distribution. 

Instead, they just alter the range of values. 

Thus: 

1. Normal distribution → stays Normal 

2. Uniform distribution → stays Uniform 

3. Skewed distribution → stays Skewed 

4. and so on… 

We can also verify this from the below illustration: 
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If you intend to eliminate skewness, scaling/standardization won’t 
help. 

Try feature transformations instead. 

I recently published a post on various transformations, which you can 

read here: Feature transformations. 

" Over to you: While feature scaling is immensely helpful, some ML 
algorithms are unaffected by the scale. Can you name some 
algorithms?  
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7 Elegant Usages of Underscore in 
Python 

 
 

Underscore offers many functionalities in Python. 

The above animation highlights 7 of the must-know usages among 
Python programmers. 

Read the full issue here: hBps://www.blog.dailydoseofds.com/p/7-elegant-

usages-of-underscore-in 
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Random Forest May Not Need An 
Explicit Validation Set For Evaluation 

 
 

We all know that ML models should not be evaluated on the training 
data. Thus, we should always keep a held-out validation/test set for 
evaluation. 

But random forests are an exception to that. 

In other words, you can reliably evaluate a random forest using the 
training set itself. 

Confused? 

Let me explain. 

To recap, a random forest is trained as follows: 

1. First, create different subsets of data with replacement. 

2. Next, train one decision tree per subset. 

3. Finally, aggregate all predictions to get the final prediction. 

Clearly, EVERY decision tree has some unseen data 
points in the entire training set. 
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Thus, we can use them to validate that specific decision tree. 

This is also called out-of-bag validation. 

Calculating the out-of-bag score for the whole random forest is 
simple too. 

1. For every data point in the entire training set: 

2. Gather predictions from all decision trees that used it as an out-
of-bag sample 
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3. Aggregate predictions to get the final prediction 

4. Finally, score all the predictions to get the out-of-bag score. 

Out-of-bag validation has several benefits: 

1. If you have less data, you can prevent data splitting 

2. It's computationally faster than using, say, cross-validation 

3. It ensures that there is no data leakage, etc. 

Luckily, out-of-bag validation is neatly tied in sklearn’s random forest 
implementation too. 

 

 

Parameter for out-of-bag scoring as specified in the official docs 

" Over to you: 

1. What are some limitations of out-of-bag validation? 

2. How reliable is the out-of-bag score to tune the hyperparameters 
of the random forest model? 
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Declutter Your Jupyter Notebook 
Using Interactive Controls 

 
 

While using Jupyter, one often finds themselves in situations where 
they repeatedly modify a cell and re-rerun it. 

This makes data exploration: 

• irreproducible, 

• tedious, and 

• unorganized. 

What’s more, the notebook also gets messy and cluttered. 

Instead, leverage interactive controls using IPywidgets. 

A single decorator (@interact) allows you to add: 

• sliders 

• dropdowns 

• text fields, and more. 
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As a result, you can: 

• explore your data interactively 

• speed-up data exploration 

• avoid repetitive cell modifications and executions 

• organize your data analysis. 

" Over to you: What are some other ways to elegantly explore data in 
Jupyter that you are aware of? 

  


